Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
- Biowissenschaften (1)
- Medizin (1)
Background: Alternative polyadenylation (APA) refers to the regulated selection of polyadenylation sites (PASs) in transcripts, which determines the length of their 3′ untranslated regions (3′UTRs). We have recently shown that SRSF3 and SRSF7, two closely related SR proteins, connect APA with mRNA export. The mechanism underlying APA regulation by SRSF3 and SRSF7 remained unknown.
Results: Here we combine iCLIP and 3′-end sequencing and find that SRSF3 and SRSF7 bind upstream of proximal PASs (pPASs), but they exert opposite effects on 3′UTR length. SRSF7 enhances pPAS usage in a concentration-dependent but splicing-independent manner by recruiting the cleavage factor FIP1, generating short 3′UTRs. Protein domains unique to SRSF7, which are absent from SRSF3, contribute to FIP1 recruitment. In contrast, SRSF3 promotes distal PAS (dPAS) usage and hence long 3′UTRs directly by counteracting SRSF7, but also indirectly by maintaining high levels of cleavage factor Im (CFIm) via alternative splicing. Upon SRSF3 depletion, CFIm levels decrease and 3′UTRs are shortened. The indirect SRSF3 targets are particularly sensitive to low CFIm levels, because here CFIm serves a dual function; it enhances dPAS and inhibits pPAS usage by binding immediately downstream and assembling unproductive cleavage complexes, which together promotes long 3′UTRs.
Conclusions; We demonstrate that SRSF3 and SRSF7 are direct modulators of pPAS usage and show how small differences in the domain architecture of SR proteins can confer opposite effects on pPAS regulation.
Mitochondrial RNA granules (MRGs) are membraneless, highly specialized compartments that play an essential role in the post-transcriptional regulation of mitochondrial gene expression. This regulation is crucial for maintaining energy production, controlling metabolic functions and ensuring homeostasis in cells. Dysregulation of mitochondrial genes has been linked to various human diseases, including neurodegenerative and metabolic disorders as well as certain types of cancer.
MRGs are composed of different RNA species, including mitochondrial precursor RNA (pre-RNA), mature tRNAs, rRNAs and mRNAs complexed with multiple proteins involved in RNA processing and mitoribosome assembly. However, despite the significance of MRGs, their protein composition, structural organization, stability and dynamics during stress conditions remain elusive. In the study reported here, I adopted a three-step approach to address the aforementioned fundamental issues.
First and foremost, I identified the protein composition of MRGs and unveiled their architectural complexity. To characterize the MRG proteome, I applied the cutting-edge TurboID-based proximity labeling approach combined with quantitative mass spectrometry. Proximity labeling was conducted on 20 distinct MRG-associated human proteins, resulting in the identification of more than 1,700 protein-protein interactions. This expansive dataset enabled me to create a comprehensive network, providing valuable insights into both the (sub)architecture as well as the core structure of MRGs in-depth.
Secondly, I investigated the spatio-temporal dynamics of MRGs under various mitochondrial stress conditions. To monitor the morphological alterations and compositional changes of MRGs, I utilized time-resolved confocal fluorescence microscopy and proteomics, respectively. In this analysis, I applied IMT1, the first specific inhibitor that selectively targets mitochondrial transcription. Using this methodology, I pinpointed precise conditions that triggered MRGs’ disassembly during stress, followed by their reassembly when nascent RNA production was restored. The results of this examination elucidate that MRGs are highly dynamic and stress adaptive structures, capable of rapid dissolution and reassembly, a process closely connected to mitochondrial transcription.
Thirdly, I aimed to explore the impact of RNA turnover on MRGs’ integrity during stress, employing confocal fluorescence microscopy and quantitative real-time PCR. I observed that depletion of MRG proteins associated with RNA degradation counteracts MRGs’ disassembly under stress conditions, a phenomenon attributed to the accumulation of double-stranded RNA (dsRNA). These results emphasize the critical role of pre-RNA turnover in maintaining MRG integrity and reveal that MRGs can be stabilized by dsRNA.
Taken together, the comprehensive investigation reported in this thesis has substantially broadened and deepened our understanding of MRGs’ complexity. By identifying their molecular structure and dynamics, I have gained significant insights into the fundamental characteristics and biological functions of MRGs in cellular processes. This knowledge contributes to the identification of disease-related pathways linked to mitochondrial gene expression and may inspire future studies to develop novel therapeutic approaches.