Refine
Document Type
- Conference Proceeding (4)
- Article (1)
- Diploma Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
- Physik (6)
The crossbar-H-mode (CH) structure is the first superconducting multicell drift tube cavity for the low and medium energy range operated in the H21 mode. Because of the large energy gain per cavity, which leads to high real estate gradients, it is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profile. A prototype cavity has been developed and tested successfully with a gradient of 7MV/m. A few new superconducting CH cavities with improved geometries for different high power applications are under development at present. One cavity (f=325 MHz, β=0.16, seven cells) is currently under construction and studied with respect to a possible upgrade option for the GSI UNILAC. Another cavity (f=217 MHz, β=0.059, 15 cells) is designed for a cw operated energy variable heavy ion linac application. Furthermore, the EUROTRANS project (European research program for the transmutation of high level nuclear waste in an accelerator driven system, 600 MeV protons, 352 MHz) is one of many possible applications for this kind of superconducting rf cavity. In this context a layout of the 17 MeV EUROTRANS injector containing four superconducting CH cavities was proposed by the Institute for Applied Physics (IAP) Frankfurt. The status of the cavity development related to the EUROTRANS injector is presented.
The MYRRHA Project (Multi Purpose Hybrid Reactor for High Tech Applications) at Mol/belgium will be a user facility with emphasis on research with neutron generated by a spallation source. One main aspect is the demonstration of nuclear waste technology using an accelerator driven system. A superconducting linac delivers a 4 mA, 600 MeV proton beam. The first accelerating section is covered by the 17 MeV injector. It consists of a proton source, an RFQ, two room temperature CH cavities and 4 superconducting CH-cavities. The initial design has used an RF frequency of 352 MHz. Recently the frequency of the injector has been set to 176 MHz. The main reason is the possible use of a 4-rod-RFQ with reduced power dissipation and energy, respectively. The status of the overall injector layout including cavity design is presented.
Im Rahmen der vorliegenden Diplomarbeit wurden die bei den Kalttests der supraleitenden 360 MHz CH-Prototypkavität gewonnenen Messergebnisse sowie das Prinzip der Hochfrequenzmessung an supraleitenden Resonatoren vorgestellt. Zudem wurde bei dem Aufbau eines eigens für diese Messungen optimierten horizontalen Kryostaten mitgearbeitet. Die wesentlichen Elemente des Kryostaten wurden dargestellt und das Kaltfahren des gesamten Kryosystems erläutert. Das am IAP erarbeitete Tuningkonzept, bei dem ein langsamer, kettenbetriebener Tuner für den Ausgleich statischer Frequenzänderungen und zusätzlich drei Piezotuner zur Kompensation schneller Frequenzschwankungen eingesetzt werden, konnte aufgrund der zu groÿen Schwankungen der Resonanzfrequenz, die durch die stetige Befüllung des Kryostaten mit Helium hervorgerufen wurde, nur bedingt getestet werden. Dennoch konnte gezeigt werden, dass der Piezotuner die Frequenz der Kavität für kurze Zeit konstant hält und der langsame, mechanische Tuner einen Frequenzhub von 400 kHz erreichen kann. Für weitere Kalttests der CH-Struktur im horizontalen Kryostaten werden zur Zeit sowohl das Regelsystem für die schnellen Piezotuner als auch die Motorsteuerung des mechanischen Tuners optimiert.
In einem weiteren Arbeitsschritt wurden mit Hilfe der Simulationssoftware ANSYS Rechnungen zur Geometrieoptimierung des neuen dynamischen Balguners für zukünftige supraleitende CH-Strukturen durchgeführt. Das Hauptaugenmerk der Optimierung lag hierbei auf der Reduktion der auftretenden Materialspannungen bei einem vorgesehenen Hub von ca. ± mm, der durch eine äuÿere Belastung hervorgerufen wird. Dabei wurden verschiedene geometrische Gröÿen variiert und die optimalen Parameter gefunden. Zudem wurde eine Modalanalyse durchgeführt, um zu verhindern, dass die mechanischen Eigenfrequenzen des Balgtuners in den Betriebsbereich des Piezotuners, der letztlich für den Antrieb der dynamischen Balgtuner vorgesehen ist, fallen. Die nach sämtlichen Simulationsschritten berechnete und final vorgesehene Tunergeometrie und deren Parameter, die bezüglich des auftretenden von-Mises-Stresses optimiert wurden, sind in Abbildung bzw. Tabelle 9.1 dargestellt.
Desweiteren wurden mit Hilfe des Simulationsprogramms CST MicroWave Studio Untersuchungen zu Multipacting durchgeführt. Aufgrund der problematischen Spannungswerte im oberen Gap des Tuners müssen in weiteren Arbeitsschritten zusätzliche Simulationsrechnungen durchgeführt werden, um die Gefahr von Multipacting zu verhindern. Um die strukturmechanischen Simulationsergebnisse und deren Genauigkeit zu validieren, wurde zu Testzwecken ein Balgtunerprototyp bestehend aus eineinhalb Zellen von der Firma RI in Bergisch Gladbach gefertigt. Messungen der maximalen Auslenkung zeigten zwischen simulierten und gemessenen Werten eine Diskrepanz von einem Faktor von ungefähr 3.
Für weitere Testzwecke soll ein weiterer Balgtunerprototyp bestehend aus 6 Zellen nach den simulierten Parametern angefertigt und später sowohl bei Raumtemperatur als auch unter kryogenen Bedingungen auf dessen Auslenkung getestet werden.
At the Institute for Applied Physics (IAP), University of Frankfurt, a s.c. 325 MHz CH-Cavity is under development for future beam tests at GSI UNILAC, Darmstadt. The cavity with 7 accelerating cells has a geometrical beta of 0.15 corresponding to 11.4 AMeV. The design gradient is 5 MV/m. The geometry of this resonator was optimized with respect to a compact design, low peak fields, surface processing, power coupling and tuning. Furthermore a new tuning system based on bellow tuners inside the resonator will control the frequency during operation. After rf tests in Frankfurt the cavity will be tested with a 10 mA, 11.4 AMeV beam delivered by the GSI UNILAC. In this paper rf simulations, multipacting analysis as well as thermal calculations will be presented.
At GSI a new, superconducting (sc) continuous wave (cw) LINAC is under design in cooperation with the Institute for Applied Physics (IAP) of Frankfurt University and the Helmholtz Institut Mainz (HIM). This proposed LINAC is highly requested by a broad community of future users to fulfill the requirements of nuclear chemistry, nuclear physics, and especially in the research field of Super Heavy Elements (SHE). In this context the preliminary layout of the LINAC has been carried out by IAP. The main acceleration of up to 7.3 AMeV will be provided by nine sc Crossbar-H-mode (CH) cavities operated at 217 MHz. Currently, a prototype of the cw LINAC as a demonstrator is under development. The demonstrator comprises a sc CH-cavity embedded between two sc solenoids mounted in a horizontal cryomodule. A full performance test of the demonstrator in 2013/14 by injecting and accelerating a beam from the GSI High Charge Injector (HLI) is one important milestone of the project. The status of the demonstrator is presented.
The superconducting CH-structure (Crossbar-H-mode) is a multi-cell drift tube cavity for the low and medium energy range operated in the H21-mode, which has been developed at the Institute for Applied Physics (IAP) of Frankfurt University. With respect to different high power applications two types of superconducting CH-structures (f = 325 MHz, β = 0.16, seven cells and f = 217 MHz, β = 0.059, 15 cells) are presently under construction and accordingly under development. The structural mechanical simulation is a very important aspect of the cavity design. Furthermore, several simulations with ANSYS Workbench have been performed to predict the deformation of the cavity walls due to the cavity cool-down, pressure effects and mechanical vibrations. To readjust the fast frequency changes in consequence of the cavity shape deformation, a new concept for the dynamic frequency tuning has been investigated, including a novel type of bellow-tuner.