Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
Translation of mRNA into a polypeptide chain is a highly accurate process. Many prokaryotic and eukaryotic viruses, however, use leaky termination of translation to optimize their coding capacity. Although growing evidence indicates the occurrence of ribosomal readthrough also in higher organisms, a biological function for the resulting extended proteins has been elucidated only in very few cases. Here, we report that in human cells programmed stop codon readthrough is used to generate peroxisomal isoforms of cytosolic enzymes. We could show for NAD-dependent lactate dehydrogenase B (LDHB) and NAD-dependent malate dehydrogenase 1 (MDH1) that translational readthrough results in C-terminally extended protein variants containing a peroxisomal targeting signal 1 (PTS1). Efficient readthrough occurs at a short sequence motif consisting of a UGA termination codon followed by the dinucleotide CU. Leaky termination at this stop codon context was observed in fungi and mammals. Comparative genome analysis allowed us to identify further readthrough-derived peroxisomal isoforms of metabolic enzymes in diverse model organisms. Overall, our study highlights that a defined stop codon context can trigger efficient ribosomal readthrough to generate dually targeted protein isoforms. We speculate that beyond peroxisomal targeting stop codon readthrough may have also other important biological functions, which remain to be elucidated.
Purpose: Early detection of adenocarcinomas in the esophagus is crucial for achieving curative endoscopic therapy. Targeted biopsies of suspicious lesions, as well as four-quadrant biopsies, represent the current diagnostic standard. However, this procedure is time-consuming, cost-intensive, and examiner-dependent. The aim of this study was to test whether impedance spectroscopy is capable of distinguishing between healthy, premalignant, and malignant lesions. An ex vivo measurement method was developed to examine esophageal lesions using impedance spectroscopy immediately after endoscopic resection. Methods: After endoscopic resection of suspicious lesions in the esophagus, impedance measurements were performed on resected cork-covered tissue using a measuring head that was developed, with eight gold electrodes, over 10 different measurement settings and with frequencies from 100 Hz to 1 MHz. Results: A total of 105 measurements were performed in 60 patients. A dataset of 400 per investigation and a total of more than 42,000 impedance measurements were therefore collected. Electrical impedance spectroscopy (EIS) was able to detect dysplastic esophageal mucosa with a sensitivity of 81% in Barrett’s esophagus. Conclusion: In summary, EIS was able to distinguish different tissue characteristics in the different esophageal tissues. EIS thus holds potential for further development of targeted biopsies during surveillance endoscopy.