Refine
Year of publication
Has Fulltext
- yes (212)
Is part of the Bibliography
- no (212)
Keywords
- crystal structure (34)
- hydrogen bonding (11)
- X-Ray Structure Analysis (7)
- TATD (4)
- Schiff bases (3)
- benzoxazines (3)
- co-crystalline adducts (3)
- phenolic resins (3)
- silicon (3)
- NHC (2)
Institute
- Biochemie und Chemie (194)
- Biochemie, Chemie und Pharmazie (11)
- Medizin (7)
- Physik (2)
While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest.
Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10−8. When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10−8 threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
Remote control of the synthesis of a [2]rotaxane and its shuttling via metal‐ion translocation
(2019)
Remote control in an eight‐component network commanded both the synthesis and shuttling of a [2]rotaxane via metal‐ion translocation, the latter being easily monitored by distinct colorimetric and fluorimetric signals. Addition of zinc(II) ions to the red colored copper‐ion relay station rapidly liberated copper(I) ions and afforded the corresponding zinc complex that was visualized by a bright sky blue fluorescence at 460 nm. In a mixture of all eight components of the network, the liberated copper(I) ions were translocated to a macrocycle that catalyzed formation of a rotaxane by a double‐click reaction of acetylenic and diazide compounds. The shuttling frequency in the copper‐loaded [2]rotaxane was determined to k298=30 kHz (ΔH≠=62.3±0.6 kJ mol−1, ΔS≠=50.1±5.1 J mol−1 K−1, ΔG≠298=47.4 kJ mol−1). Removal of zinc(II) ions from the mixture reversed the system back generating the metal‐free rotaxane. Further alternate addition and removal of Zn2+ reversibly controlled the shuttling mode of the rotaxane in this eight‐component network where the ion translocation status was monitored by the naked eye.
The crystal structure of the title salt, [Li(CH3CN)4][B(NCS)4], is composed of discrete cations and anions. Both the Li and B atoms show a tetrahedral coordination by four equal ligands. The acetonitrile and isothiocyanate ligands are linear. The bond angles at the B atom are close to the ideal tetrahedral value [108.92 (18)–109.94 (16)°], but the bond angles at the Li atom show larger deviations [106.15 (17)–113.70 (17)°].
A chiral analog of the bicyclic guanidine TBD : synthesis, structure and Brønsted base catalysis
(2016)
Starting from (S)-β-phenylalanine, easily accessible by lipase-catalyzed kinetic resolution, a chiral triamine was assembled by a reductive amination and finally cyclized to form the title compound 10. In the crystals of the guanidinium benzoate salt the six membered rings of 10 adopt conformations close to an envelope with the phenyl substituents in pseudo-axial positions. The unprotonated guanidine 10 catalyzes Diels–Alder reactions of anthrones and maleimides (25–30% ee). It also promotes as a strong Brønsted base the retro-aldol reaction of some cycloadducts with kinetic resolution of the enantiomers. In three cases, the retro-aldol products (48–83% ee) could be recrystallized to high enantiopurity (≥95% ee). The absolute configuration of several compounds is supported by anomalous X-ray diffraction and by chemical correlation.
A new polymorph of the title compound, [Pd2(C8H18P)2(C8H19P)2], has been found. It belongs to the triclinic P-1 space group, whereas the known form [Leoni, Sommovigo, Pasquali, Sabatino & Braga (1992 [triangle]), J. Organomet. Chem. 423, 263–270] crystallizes in the monoclinic C2/c space group. The title compound features a dinuclear palladium complex with a planar central Pd2(μ-P)2 core (r.m.s. deviation = 0.003 Å). The Pd—Pd distance of 2.5988 (5) Å is within the range of a PdI—PdI bond. The molecules of both polymorphs are located on a crystallographic centre of inversion. The molecular conformations of the two polymorphs are essentially identical. The crystal packing patterns, on the other hand, are slightly different.
Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
[MesnacnacZn(μ-H)]2 (1) was synthesized by reaction of MesnacnacZnI with either an equimolar amount of KNH(iPr)BH3 or an excess of NaH and characterized by multinuclear NMR and IR spectroscopy as well as X-ray diffraction. Two polymorphs of 1 were found and their structures determined on single crystals.
In the search for novel organic charge transfer salts with variable degrees of charge transfer we have studied the effects of two modifications of the recently synthesized donor–acceptor system [tetramethoxypyrene (TMP)]–[tetracyanoquinodimethane (TCNQ)]. One is of chemical nature by substituting the acceptor TCNQ molecules by F4TCNQ molecules. The second consists in simulating the application of uniaxial pressure along the stacking axis of the system. In order to test the chemical substitution, we have grown single crystals of the TMP–F4TCNQ complex and analyzed its electronic structure via electronic transport measurements, ab initio density functional theory (DFT) calculations and UV/VIS/IR absorption spectroscopy. This system shows an almost ideal geometrical overlap of nearly planar molecules stacked alternately (mixed stack) and this arrangement is echoed by a semiconductor-like transport behavior with an increased conductivity along the stacking direction. This is in contrast to TMP–TCNQ which shows a less pronounced anisotropy and a smaller conductivity response. Our band structure calculations confirm the one-dimensional behavior of TMP–F4TCNQ with pronounced dispersion only along the stacking axis. Infrared measurements illustrating the C[triple bond, length as m-dash]N vibration frequency shift in F4TCNQ suggest however no improvement in the degree of charge transfer in TMP–F4TCNQ with respect to TMP–TCNQ. In both complexes about 0.1e is transferred from TMP to the acceptor. Concerning the pressure effect, our DFT calculations on the designed TMP–TCNQ and TMP–F4TCNQ structures under different pressure conditions show that application of uniaxial pressure along the stacking axis of TMP–TCNQ may be the route to follow in order to obtain a much more pronounced charge transfer.
Molecules of the title compound, C40H42BrNO6, are located on a crystallographic twofold rotation axis. As a result, the nitro group and bromine residue are mutually disordered with equal occupancies. The propoxy-substituted aromatic rings are close to parallel to each other [dihedral angle = 21.24 (1)°], whereas the propenoxy-substituted rings enclose a dihedral angle of 70.44 (1)°. The dihedral angles between the methylene C atoms and the aromatic rings shows that the propenoxy substituted rings are bent away from the calixarene cavity [dihedral angle between the planes = 35.22 (8)°], whereas the propoxy-substituted rings are almost perpendicular [79.38 (10)°] to the plane of the methylene C atoms. Key indicators: single-crystal X-ray study; T = 173 K; mean σ(C–C) = 0.006 A° ; disorder in main residue; R factor = 0.065; wR factor = 0.130; data-to-parameter ratio = 11.8.