Refine
Year of publication
Document Type
- Article (14)
- Conference Proceeding (1)
- Preprint (1)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- glioblastoma (6)
- glioma (3)
- anti-angiogenic therapy (2)
- bevacizumab (2)
- 19F MR spectroscopy (1)
- 1H MR spectroscopy (1)
- 2-hydroxyglutarate (1)
- BRAF (1)
- BRAF V600E (1)
- Brain tumor (1)
Institute
BRAF V600E mutations occur frequently in malignant melanoma, but are rare in most malignant glioma subtypes. Besides, more benign brain tumors such as ganglioglioma, dysembryoblastic neuroepithelial tumours and supratentorial pilocytic astrocytomas, only pleomorphic xanthoastrocytomas (50-78%) and epitheloid glioblastoma (50%) regularly exhibit BRAF mutations. In the present study, we report on three patients with recurrent malignant gliomas harbouring a BRAF V600E mutation. All patients presented with markedly disseminated leptomeningeal disease at recurrence and had progressed after radiotherapy and alkylating chemotherapy. Therefore, estimated life expectancy at recurrence was a few weeks. All three patients received dabrafenib as a single agent and all showed a complete or nearly complete response. Treatment is ongoing and patients are stable for 27 months, 7 months and 3 months, respectively. One patient showed a dramatic radiologic and clinical response after one week of treatment. We were able to generate an ex vivo tumor cell culture from CSF in one patient. Treatment of this cell culture with dabrafenib resulted in reduced cell density and inhibition of ERK phosphorylation in vitro. To date, this is the first series on adult patients with BRAF-mutated malignant glioma and leptomeningeal dissemination treated with dabrafenib monotherapy. All patients showed a dramatic response with one patient showing an ongoing response for more than two years.
Recently, the conserved intracellular digestion mechanism ‘autophagy’ has been considered to be involved in early tumorigenesis and its blockade proposed as an alternative treatment approach. However, there is an ongoing debate about whether blocking autophagy has positive or negative effects in tumor cells. Since there is only poor data about the clinico-pathological relevance of autophagy in gliomas in vivo, we first established a cell culture based platform for the in vivo detection of the autophago-lysosomal components. We then investigated key autophagosomal (LC3B, p62, BAG3, Beclin1) and lysosomal (CTSB, LAMP2) molecules in 350 gliomas using immunohistochemistry, immunofluorescence, immunoblotting and qPCR. Autophagy was induced pharmacologically or by altering oxygen and nutrient levels. Our results show that autophagy is enhanced in astrocytomas as compared to normal CNS tissue, but largely independent from the WHO grade and patient survival. A strong upregulation of LC3B, p62, LAMP2 and CTSB was detected in perinecrotic areas in glioblastomas suggesting micro-environmental changes as a driver of autophagy induction in gliomas. Furthermore, glucose restriction induced autophagy in a concentration-dependent manner while hypoxia or amino acid starvation had considerably lesser effects. Apoptosis and autophagy were separately induced in glioma cells both in vitro and in vivo. In conclusion, our findings indicate that autophagy in gliomas is rather driven by micro-environmental changes than by primary glioma-intrinsic features thus challenging the concept of exploitation of the autophago-lysosomal network (ALN) as a treatment approach in gliomas.
Immunohistochemical assessment of phosphorylated mTORC1-pathway proteins in human brain tumors
(2015)
Background: Current pathological diagnostics include the analysis of (epi-)genetic alterations as well as oncogenic pathways. Deregulated mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated in a variety of cancers including malignant gliomas and is considered a promising target in cancer treatment. Monitoring of mTORC1 activity before and during inhibitor therapy is essential. The aim of our study is to provide a recommendation and report on pitfalls in the use of phospho-specific antibodies against mTORC1-targets phospho-RPS6 (Ser235/236; Ser240/244) and phospho-4EBP1 (Thr37/46) in formalin fixed, paraffin embedded material.
Methods and findings: Primary, established cell lines and brain tumor tissue from routine diagnostics were assessed by immunocyto-, immunohistochemistry, immunofluorescent stainings and immunoblotting. For validation of results, immunoblotting experiments were performed. mTORC-pathway activation was pharmacologically inhibited by torin2 and rapamycin. Torin2 treatment led to a strong reduction of signal intensity and frequency of all tested antibodies. In contrast phospho-4EBP1 did not show considerable reduction in staining intensity after rapamycin treatment, while immunocytochemistry with both phospho-RPS6-specific antibodies showed a reduced signal compared to controls. Staining intensity of both phospho-RPS6-specific antibodies did not show considerable decrease in stability in a timeline from 0–230 minutes without tissue fixation, however we observed a strong decrease of staining intensity in phospho-4EBP1 after 30 minutes. Detection of phospho-signals was strongly dependent on tissue size and fixation gradient. mTORC1-signaling was significantly induced in glioblastomas although not restricted to cancer cells but also detectable in non-neoplastic cells.
Conclusion: Here we provide a recommendation for phospho-specific immunohistochemistry for patient-orientated therapy decisions and monitoring treatment response.
Local anesthetics are commonly administered by nuchal infiltration to provide a temporary interscalene brachial plexus block (ISB) in a surgical setting. Although less commonly reported, local anesthetics can induce central nervous system toxicity. In this case study, we present three patients with acute central nervous system toxicity induced by local anesthetics applied during ISB with emphasis on neurological symptoms, key neuroradiological findings and functional outcome. Medical history, clinical and imaging findings, and outcome of three patients with local anesthetic-induced toxic left hemisphere syndrome during left ISB were analyzed. All patients were admitted to our neurological intensive care unit between November 2016 and September 2019. All three patients presented in poor clinical condition with impaired consciousness and left hemisphere syndrome. Electroencephalography revealed slow wave activity in the affected hemisphere of all patients. Seizure activity with progression to status epilepticus was observed in one patient. In two out of three patients, cortical FLAIR hyperintensities and restricted diffusion in the territory of the left internal carotid artery were observed in magnetic resonance imaging. Assessment of neurological severity scores revealed spontaneous partial reversibility of neurological symptoms. Local anesthetic-induced CNS toxicity during ISB can lead to severe neurological impairment and anatomically variable cerebral lesions.
Simple Summary: Targeted therapies are of growing interest to physicians in cancer treatment. These drugs target specific genes and proteins involved in the growth and survival of cancer cells. Brain tumor therapy is complicated by the fact that not all drugs can penetrate the blood brain barrier and reach their target. We explored the non-invasive method, Magnetic Resonance Spectroscopy, for monitoring drug penetration and its effects in live animals bearing brain tumors. We were able to show the presence of the investigated drug in mouse brains and its on-target activity.
Abstract: Background: BAY1436032 is a fluorine-containing inhibitor of the R132X-mutant isocitrate dehydrogenase (mIDH1). It inhibits the mIDH1-mediated production of 2-hydroxyglutarate (2-HG) in glioma cells. We investigated brain penetration of BAY1436032 and its effects using 1H/19F-Magnetic Resonance Spectroscopy (MRS). Methods: 19F-Nuclear Magnetic Resonance (NMR) Spectroscopy was conducted on serum samples from patients treated with BAY1436032 (NCT02746081 trial) in order to analyze 19F spectroscopic signal patterns and concentration-time dynamics of protein-bound inhibitor to facilitate their identification in vivo MRS experiments. Hereafter, 30 mice were implanted with three glioma cell lines (LNT-229, LNT-229 IDH1-R132H, GL261). Mice bearing the IDH-mutated glioma cells received 5 days of treatment with BAY1436032 between baseline and follow-up 1H/19F-MRS scan. All other animals underwent a single scan after BAY1436032 administration. Mouse brains were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Results: Evaluation of 1H-MRS data showed a decrease in 2-HG/total creatinine (tCr) ratios from the baseline to post-treatment scans in the mIDH1 murine model. Whole brain concentration of BAY1436032, as determined by 19F-MRS, was similar to total brain tissue concentration determined by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS), with a signal loss due to protein binding. Intratumoral drug concentration, as determined by LC-MS/MS, was not statistically different in models with or without R132X-mutant IDH1 expression. Conclusions: Non-invasive monitoring of mIDH1 inhibition by BAY1436032 in mIDH1 gliomas is feasible.
Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.
Ventriculoperitoneal shunts equipped with a reservoir and a valve to manually switch off the shunt function can be used for intraventricular injections of therapeutics in patients suffering from a communicating hydrocephalus caused by leptomeningeal metastases. These shunt devices avoid the risk of injecting therapeutics through the distal leg of the shunt system into the intraperitoneal space, which may cause toxicity. Furthermore, regular intraventricular injections of chemotherapeutics help to maintain sufficient concentrations in the ventricular space. Therefore, ventriculoperitoneal shunts equipped with an on-off valve are a useful tool to reliably inject chemotherapeutics into the ventricles. In order to systematically assess feasibility, safety, and efficacy of this procedure, we performed a retrospective analysis of all patients with leptomeningeal metastases who had received a shunt system at our institution. In total, six adult patients had a ventriculoperitoneal shunt equipped with an on-off valve implanted. Out of these six patients, two patients subsequently received intraventricular injections of chemotherapeutics. The configuration of the valve setting and the intraventricular injections were easily feasible in the setting of a neuro-oncology department. The complication of a shunt leakage occurred in one patient following the first intraventricular injection. No extra-central nervous system (CNS) toxicities were observed. In summary, ventriculoperitoneal shunts with on-off valves are useful tools for reliable intraventricular administration of therapeutics.
Glioblastoma (GB) is the most common and aggressive primary brain tumor in adults and currently incurable. Despite multimodal treatment regimens, median survival in unselected patient cohorts is <1 year, and recurrence remains almost inevitable. Escape from immune surveillance is thought to contribute to the development and progression of GB. While GB tumors are frequently infiltrated by natural killer (NK) cells, these are actively suppressed by the GB cells and the GB tumor microenvironment. Nevertheless, ex vivo activation with cytokines can restore cytolytic activity of NK cells against GB, indicating that NK cells have potential for adoptive immunotherapy of GB if potent cytotoxicity can be maintained in vivo. NK cells contribute to cancer immune surveillance not only by their direct natural cytotoxicity which is triggered rapidly upon stimulation through germline-encoded cell surface receptors, but also by modulating T-cell mediated antitumor immune responses through maintaining the quality of dendritic cells and enhancing the presentation of tumor antigens. Furthermore, similar to T cells, specific recognition and elimination of cancer cells by NK cells can be markedly enhanced through expression of chimeric antigen receptors (CARs), which provides an opportunity to generate NK-cell therapeutics of defined specificity for cancer immunotherapy. Here, we discuss effects of the GB tumor microenvironment on NK-cell functionality, summarize early treatment attempts with ex vivo activated NK cells, and describe relevant CAR target antigens validated with CAR-T cells. We then outline preclinical approaches that employ CAR-NK cells for GB immunotherapy, and give an overview on the ongoing clinical development of ErbB2 (HER2)-specific CAR-NK cells currently applied in a phase I clinical trial in glioblastoma patients.
Purpose: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy.
Methods: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected.
Results: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI.
Conclusion: A broad range of actionable alterations was targeted with available molecular therapeutics.
However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary.