Refine
Year of publication
Document Type
- Article (69)
- Preprint (2)
- Conference Proceeding (1)
- Contribution to a Periodical (1)
Has Fulltext
- yes (73)
Is part of the Bibliography
- no (73)
Keywords
- Nuclear reactions (3)
- 2-aminobenzimidazole (2)
- Radiative capture (2)
- guanidine analogs (2)
- 140Ce (1)
- Ab initio calculations (1)
- Accelerators & Beams (1)
- Accelerators & storage rings (1)
- Anti-kaon–nucleon physics (1)
- Asymmetric Catalysis (1)
Institute
- Physik (56)
- ELEMENTS (9)
- Biochemie und Chemie (8)
- Biochemie, Chemie und Pharmazie (6)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (3)
- Biowissenschaften (1)
- Medizin (1)
- Präsidium (1)
Partial wave analysis of the reaction p(3.5 GeV) + p → pK +Λ to search for the "ppK −2 bound state
(2015)
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5 GeV) + p → pK +Λ. This reaction might contain information about the kaonic cluster “ppK −” (with quantum numbers J P = 0− and total isospin I = 1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical KNN (or, specifically “ppK −”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a KNN cluster. At a confidence level of CLs = 95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK +Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.
We report the first measurement of low-energy proton-capture cross sections of 124Xe in a heavy-ion storage ring. 124Xe54+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The 125Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.
The Coulomb Dissociation (CD) cross sections of the stable isotopes 92,94,100Mo and of the unstable isotope 93Mo were measured at the LAND/R3B setup at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Experimental data on these isotopes may help to explain the problem of the underproduction of 92,94Mo and 96,98Ru in the models of p-process nucleosynthesis. The CD cross sections obtained for the stable Mo isotopes are in good agreement with experiments performed with real photons, thus validating the method of Coulomb Dissociation. The result for the reaction 93Mo(γ,n) is especially important since the corresponding cross section has not been measured before. A preliminary integral Coulomb Dissociation cross section of the 94Mo(γ,n) reaction is presented. Further analysis will complete the experimental database for the (γ,n) production chain of the p-isotopes of molybdenum.
The 124Xe(p,γ) reaction has been measured for the first time at energies around the Gamow window by using stored ions at the ESR facility. The desired beam energies below 10 MeV/u introduce new experimental challenges like windowless ions detection under UHV conditions, extremely short beam lifetimes and efficient beam deceleration and cooling, all of which have been successfully met.
The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n_TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well.
Feasibility, design and sensitivity studies on innovative nuclear reactors that could address the issue of nuclear waste transmutation using fuels enriched in minor actinides, require high accuracy cross section data for a variety of neutron-induced reactions from thermal energies to several tens of MeV. The isotope 241Am (T1/2= 433 years) is present in high-level nuclear waste (HLW), representing about 1.8 % of the actinide mass in spent PWR UOx fuel. Its importance increases with cooling time due to additional production from the β-decay of 241Pu with a half-life of 14.3 years. The production rate of 241 Am in conventional reactors, including its further accumulation through the decay of 241Pu and its destruction through transmutation/incineration are very important parameters for the design of any recycling solution. In the present work, the 241 Am(n,f) reaction cross-section was measured using Micromegas detectors at the Experimental Area 2 of the n_TOF facility at CERN. For the measurement, the 235U(n,f) and 238U(n,f) reference reactions were used for the determination of the neutron flux. In the present work an overview of the experimental setup and the adopted data analysis techniques is given along with preliminary results.
Fission program at n_TOF
(2019)
Since its start in 2001 the n_TOF collaboration developed a measurement program on fission, in view of advanced fuels in new generation reactors. A special effort was made on measurement of cross sections of actinides, exploiting the peculiarity of the n_TOF neutron beam which spans a huge energy domain, from the thermal region up to GeV. Moreover fission fragment angular distributions have also been measured. An overview of the cross section results achieved with different detectors is presented, including a discussion of the 237Np case where discrepancies showed up between different detector systems. The results on the anisotropy of the fission fragments and its implication on the mechanism of neutron absorption, and in applications, are also shown.
Although the 12C(n,p)12B and 12C(n,d)11B reactions are of interest in several fields of basic and applied Nuclear Physics the present knowledge of these two cross-sections is far from being accurate and reliable, with both evaluations and data showing sizable discrepancies. As part of the challenging n_TOF program on (n,cp) nuclear reactions study, the energy differential cross-sections of the 12C(n,p)12B and 12C(n,d)11 B reactions have been measured at CERN from the reaction thresholds up to 30 MeV neutron energy. Both measurements have been recently performed at the long flight-path (185 m) experimental area of the n_TOF facility at CERN using a pure (99.95%) rigid graphite target and two silicon telescopes. In this paper an overview of the experiment is presented together with a few preliminary results.
Background: The photon strength functions (PSFs) and nuclear level density (NLD) are key ingredients for calculation of the photon interaction with nuclei, in particular the reaction cross sections. These cross sections are important especially in nuclear astrophysics and in the development of advanced nuclear technologies.
Purpose: The role of the scissors mode in the M1 PSF of (well-deformed) actinides was investigated by several experimental techniques. The analyses of different experiments result in significant differences, especially on the strength of the mode. The shape of the low-energy tail of the giant electric dipole resonance is uncertain as well. In particular, some works proposed a presence of the E1 pygmy resonance just above 7 MeV. Because of these inconsistencies additional information on PSFs in this region is of great interest.
Methods: The γ-ray spectra from neutron-capture reactions on the 234U, 236 U, and 238 U nuclei have been measured with the total absorption calorimeter of the n_TOF facility at CERN. The background-corrected sum-energy and multi-step-cascade spectra were extracted for several isolated s-wave resonances up to about 140 eV.
Results: The experimental spectra were compared to statistical model predictions coming from a large selection of models of photon strength functions and nuclear level density. No combination of PSF and NLD models from literature is able to globally describe our spectra. After extensive search we were able to find model combinations with modified generalized Lorentzian (MGLO) E1 PSF, which match the experimental spectra as well as the total radiative widths.
Conclusions: The constant temperature energy dependence is favored for a NLD. The tail of giant electric dipole resonance is well described by the MGLO model of the E1 PSF with no hint of pygmy resonance. The M1 PSF must contain a very strong, relatively wide, and likely double-resonance scissors mode. The mode is responsible for about a half of the total radiative width of neutron resonances and significantly affects the radiative cross section.
The accuracy on neutron capture cross section of fissile isotopes must be improved for the design of future nuclear systems such as Gen-IV reactors and Accelerator Driven Systems. The High Priority Request List of the Nuclear Energy Agency, which lists the most important nuclear data requirements, includes also the neutron capture cross sections of fissile isotopes such as 233,235U and 239,241Pu. A specific experimental setup has been used at the CERN n_TOF facility for the measurement of the neutron capture cross section of 235U by a set of micromegas fission detectors placed inside a segmented BaF2 Total Absorption Calorimeter.