Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Afrotheria (1)
- Animal phylogenetics (1)
- Elephants (1)
- Eutheria (1)
- Hyraxes (1)
- Laurasiatheria (1)
- Mammalian genomics (1)
- Mammals (1)
- Scrotifera (1)
- Sequence alignment (1)
Institute
Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade.
Descent of testes from a position near the kidneys into the lower abdomen or into the scrotum is an important developmental process that occurs in all placental mammals, with the exception of five afrotherian lineages. Since soft-tissue structures like testes are not preserved in the fossil record and since key parts of the placental mammal phylogeny remain controversial, it has been debated whether testicular descent is the ancestral or derived condition in placental mammals. To resolve this debate, we used genomic data of 71 mammalian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the gubernaculum, the ligament that is crucial for testicular descent. We show that both RXFP2 and INSL3 are lost or nonfunctional exclusively in four afrotherians (tenrec, cape elephant shrew, cape golden mole, and manatee) that completely lack testicular descent. The presence of remnants of once functional orthologs of both genes in these afrotherian species shows that these gene losses happened after the split from the placental mammal ancestor. These “molecular vestiges” provide strong evidence that testicular descent is the ancestral condition, irrespective of persisting phylogenetic discrepancies. Furthermore, the absence of shared gene-inactivating mutations and our estimates that the loss of RXFP2 happened at different time points strongly suggest that testicular descent was lost independently in Afrotheria. Our results provide a molecular mechanism that explains the loss of testicular descent in afrotherians and, more generally, highlight how molecular vestiges can provide insights into the evolution of soft-tissue characters.
Detecting associations between genomic changes and phenotypic differences is fundamental to understanding how phenotypes evolved. By systematically screening for parallel amino acid substitutions, we detected known as well as novel cases (Strc, Tecta, and Cabp2) of parallelism between echolocating bats and toothed whales in proteins that could contribute to high-frequency hearing adaptations. Our screen also showed that echolocating mammals exhibit an unusually high number of parallel substitutions in fast-twitch muscle fiber proteins. Both echolocating bats and toothed whales produce an extremely rapid call rate when homing in on their prey, which was shown in bats to be powered by specialized superfast muscles. We show that these genes with parallel substitutions (Casq1, Atp2a1, Myh2, and Myl1) are expressed in the superfast sound-producing muscle of bats. Furthermore, we found that the calcium storage protein calsequestrin 1 of the little brown bat and the bottlenose dolphin functionally converged in its ability to form calcium-sequestering polymers at lower calcium concentrations, which may contribute to rapid calcium transients required for superfast muscle physiology. The proteins that our genomic screen detected could be involved in the convergent evolution of vocalization in echolocating mammals by potentially contributing to both rapid Ca2+ transients and increased shortening velocities in superfast muscles.
Objective: The aim of the study was to analyse the psychometric properties of the EQ-5D in patients with social phobia.
Methods: We used a sample of 445 patients with social phobia with five measurement points over a 30 month period. The discriminative ability of the EQ-5D was analysed by comparing the patients' responses with the general population and between different disease severity levels. For test-retest reliability we assessed the level of agreement in patients' responses over time, when there was no change in the Liebowitz Social Anxiety Scale (LSAS). Construct validity was analysed by identifying correlations of the EQ-5D with more specific instruments. For responsiveness we compared the means of EQ VAS/EQ-5D index anchored on improved (deteriorated) health status and computed effect sizes as well as a receiver operating characteristic (ROC) curve.
Results: Compared to the general population, patients with social phobia reported more problems in the dimensions "usual activities", "pain/discomfort", and "anxiety/depression" and less problems in "mobility" and "self-care". The EQ-5D was able to distinguish between different disease severity levels. The test-retest reliability was moderate (intraclass correlation coefficient > 0.6). Correlations between the EQ-5D and other instruments were mostly small except for correlations with Beck Depression Inventory. The EQ-5D index seemed to be more responsive than the EQ VAS, but with only medium effect sizes (0.5 < effect size < 0.8) in the British EQ-5D index and only significant in patients with improved health status. The ROC analysis revealed no significant results.
Conclusions: The EQ-5D was moderately reliable and responsive in patients with improved health status. Construct validity was limited.
Trial registration: Current controlled trials ISRCTN53517394.
Background: Long sequencing reads allow increasing contiguity and completeness of fragmented, short-read–based genome assemblies by closing assembly gaps, ideally at high accuracy. While several gap-closing methods have been developed, these methods often close an assembly gap with sequence that does not accurately represent the true sequence.
Findings: Here, we present DENTIST, a sensitive, highly accurate, and automated pipeline method to close gaps in short-read assemblies with long error-prone reads. DENTIST comprehensively determines repetitive assembly regions to identify reliable and unambiguous alignments of long reads to the correct loci, integrates a consensus sequence computation step to obtain a high base accuracy for the inserted sequence, and validates the accuracy of closed gaps. Unlike previous benchmarks, we generated test assemblies that have gaps at the exact positions where real short-read assemblies have gaps. Generating such realistic benchmarks for Drosophila (134 Mb genome), Arabidopsis (119 Mb), hummingbird (1 Gb), and human (3 Gb) and using simulated or real PacBio continuous long reads, we show that DENTIST consistently achieves a substantially higher accuracy compared to previous methods, while having a similar sensitivity.
Conclusion: DENTIST provides an accurate approach to improve the contiguity and completeness of fragmented assemblies with long reads. DENTIST's source code including a Snakemake workflow, conda package, and Docker container is available at https://github.com/a-ludi/dentist. All test assemblies as a resource for future benchmarking are at https://bds.mpi-cbg.de/hillerlab/DENTIST/.