Refine
Year of publication
Document Type
- Article (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- focused electron beam induced deposition (6)
- radiation-induced nanostructures (4)
- 3D printing (2)
- Electronic properties and materials (2)
- Nanoscale materials (2)
- Superconducting properties and materials (2)
- additive manufacturing (2)
- atomic force microscopy (2)
- electron beam induced deposition (2)
- nanofabrication (2)
Institute
- Physik (23)
- Biochemie und Chemie (1)
- Medizin (1)
Background: Focused electron beam induced deposition (FEBID) is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states.
Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic) Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical strain-sensing and the detection of small, inhomogeneous magnetic fields by employing nanogranular FEBID structures are highlighted.
Conclusion: FEBID has now reached a state of maturity that allows a shift of the focus towards the development of new application fields, be it in basic research or applied. This is shown for selected examples in the present review. At the same time, when seen from a broader perspective, FEBID still has to live up to the original idea of providing a tool for electron-controlled chemistry on the nanometer scale. This has to be understood in the sense that, by providing a suitable environment during the FEBID process, the outcome of the electron-induced reactions can be steered in a controlled way towards yielding the desired composition of the products. The development of a FEBID-specialized surface chemistry is mostly still in its infancy. Next to application development, it is this aspect that will likely be a guiding light for the future development of the field of focused electron beam induced deposition.
Biological exploration of early biomarkers for chronic kidney disease (CKD) in (pre)diabetic individuals is crucial for personalized management of diabetes. Here, we evaluated two candidate biomarkers of incident CKD (sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0) concerning kidney function in hyperglycemic participants of the Cooperative Health Research in the Region of Augsburg (KORA) cohort, and in two biofluids and six organs of leptin receptor-deficient (db/db) mice and wild type controls. Higher serum concentrations of SM C18:1 and PC aa C38:0 in hyperglycemic individuals were found to be associated with lower estimated glomerular filtration rate (eGFR) and higher odds of CKD. In db/db mice, both metabolites had a significantly lower concentration in urine and adipose tissue, but higher in the lungs. Additionally, db/db mice had significantly higher SM C18:1 levels in plasma and liver, and PC aa C38:0 in adrenal glands. This cross-sectional human study confirms that SM C18:1 and PC aa C38:0 associate with kidney dysfunction in pre(diabetic) individuals, and the animal study suggests a potential implication of liver, lungs, adrenal glands, and visceral fat in their systemic regulation. Our results support further validation of the two phospholipids as early biomarkers of renal disease in patients with (pre)diabetes.
Nano-granular metals are materials that fall into the general class of granular electronic systems in which the interplay of electronic correlations, disorder and finite size effects can be studied. The charge transport in nano-granular metals is dominated by thermally-assisted, sequential and correlated tunneling over a temperature-dependent number of metallic grains. Here we study the frequency-dependent conductivity (AC conductivity) of nano-granular Platinum with Pt nano-grains embedded into amorphous carbon (C). We focus on the transport regime on the insulating side of the insulator metal transition reflected by a set of samples covering a range of tunnel-coupling strengths. In this transport regime polarization contributions to the AC conductivity are small and correlation effects in the transport of free charges are expected to be particularly pronounced. We find a universal behavior in the frequency dependence that can be traced back to the temperature-dependent zero-frequency conductivity (DC conductivity) of Pt/C within a simple lumped-circuit analysis. Our results are in contradistinction to previous work on nano-granular Pd/ZrO2ZrO2 in the very weak coupling regime where polarization contributions to the AC conductivity dominated. We describe possible future applications of nano-granular metals in proximity impedance spectroscopy of dielectric materials.
Controlling magnetic properties on the nanometer-scale is essential for basic research in micro-magnetism and spin-dependent transport, as well as for various applications such as magnetic recording, imaging and sensing. This has been accomplished to a very high degree by means of layered heterostructures in the vertical dimension. Here we present a complementary approach that allows for a controlled tuning of the magnetic properties of Co/Pt heterostructures on the lateral mesoscale. By means of in situ post-processing of Pt- and Co-based nano-stripes prepared by focused electron beam induced deposition (FEBID) we are able to locally tune their coercive field and remanent magnetization. Whereas single Co-FEBID nano-stripes show no hysteresis, we find hard-magnetic behavior for post-processed Co/Pt nano-stripes with coercive fields up to 850 Oe. We attribute the observed effects to the locally controlled formation of the CoPt L10 phase, whose presence has been revealed by transmission electron microscopy.
Scanning Hall probe microscopy is attractive for minimally invasive characterization of magnetic thin films and nanostructures by measurement of the emanating magnetic stray field. Established sensor probes operating at room temperature employ highly miniaturized spin-valve elements or semimetals, such as Bi. As the sensor layer structures are fabricated by patterning of planar thin films, their adaption to custom-made sensor probe geometries is highly challenging or impossible. Here we show how nanogranular ferromagnetic Hall devices fabricated by the direct-write method of focused electron beam induced deposition (FEBID) can be tailor-made for any given probe geometry. Furthermore, we demonstrate how the magnetic stray field sensitivity can be optimized in situ directly after direct-write nanofabrication of the sensor element. First proof-of-principle results on the use of this novel scanning Hall sensor are shown.
We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID). It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO)6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me)3. For W(CO)6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me)3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.
In this paper we present first-order reversal curve (FORC) diagrams of ensembles of three-dimensional Co3Fe nanostructures as 2 × 2 arrays of nano-cubes and nano-trees. The structures are fabricated and investigated by an advanced platform of focused electron beam induced deposition combined with high-resolution detection of magnetic stray fields using a home-built micro-Hall magnetometer based on an AlGaAs/GaAs heterostructure. The experimental FORC diagrams are compared to macrospin simulations for both geometries at different angles of the externally applied magnetic field. The measured FORC diagrams are in good agreement with the simulated ones and reflect non-uniform magnetization reversal dominated by multi-vortex states within, and strong magnetic coupling between, the building blocks of our nanostructures. Thus, a FORC analysis of small arrays of 3D magnetic nanostructures provides more detailed insights into the mechanisms of magnetization reversal beyond standard major hysteresis loop measurements.
Bei den im Rahmen des Forschungsverbundes erfolgten faunistischen Untersuchungen stand die Charakterisierung der unterschiedlichen, vor allem aber der wertvollen Biotoptypen der Braunkohlenfolgelandschaft mit Hilfe der dort lebenden Tierarten bzw. Artengemeinschaften im Vordergrund. Es wurden Tiergruppen bearbeitet, die zum einen ein hohes indikatorisches Potential besitzen, zum anderen unterschiedliche ökologische Hierachieebenen repräsentieren. Eine Auswertung der Ergebnisse erfolgte zumeist auf der Ebene der Biotoptypengruppen (siehe Heyde; Jakob; Köck; Reuter im gleichen Heft).
By the fabrication of periodically arranged nanomagnetic systems it is possible to engineer novel physical properties by realizing artificial lattice geometries that are not accessible via natural crystallization or chemical synthesis. This has been accomplished with great success in two dimensions in the fields of artificial spin ice and magnetic logic devices, to name just two. Although first proposals have been made to advance into three dimensions (3D), established nanofabrication pathways based on electron beam lithography have not been adapted to obtain free-form 3D nanostructures. Here we demonstrate the direct-write fabrication of freestanding ferromagnetic 3D nano-architectures. By employing micro-Hall sensing, we have determined the magnetic stray field generated by our free-form structures in an externally applied magnetic field and we have performed micromagnetic and macro-spin simulations to deduce the spatial magnetization profiles in the structures and analyze their switching behavior. Furthermore we show that the magnetic 3D elements can be combined with other 3D elements of different chemical composition and intrinsic material properties.