Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- AGN host galaxies (1)
- Antiviral therapy (1)
- Artificial Intelligence (1)
- Biodiversity Data (1)
- Biomonitoring (1)
- Botanical Collections (1)
- Chronic hepatitis C (1)
- Clinical efficacy (1)
- Compact astrophysical objects (1)
- Conservation (1)
Institute
Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources. Centaurus A is the closest radio-loud source to Earth. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses.
We present the first very long baseline interferometric (VLBI) observations of the blazar OJ 287 carried out jointly with the Global Millimeter VLBI Array (GMVA) and the phased Atacama Large Millimeter/submillimeter Array (ALMA) at 3.5 mm on 2017 April 2. The participation of phased ALMA has not only improved the GMVA north–south resolution by a factor of ∼3, but has also enabled fringe detections with signal-to-noise ratios up to 300 at baselines longer than 2 Gλ. The high sensitivity has motivated us to image the data with newly developed regularized maximum likelihood imaging methods, revealing the innermost jet structure with unprecedentedly high angular resolution. Our images reveal a compact and twisted jet extending along the northwest direction, with two bends within the inner 200 μas, resembling a precessing jet in projection. The component at the southeastern end shows a compact morphology and high brightness temperature, and is identified as the VLBI core. An extended jet feature that lies at ∼200 μas northwest of the core shows a conical shape, in both total and linearly polarized intensity, and a bimodal distribution of the linear polarization electric vector position angle. We discuss the nature of this feature by comparing our observations with models and simulations of oblique and recollimation shocks with various magnetic field configurations. Our high-fidelity images also enabled us to search for possible jet features from the secondary supermassive black hole (SMBH) and test the SMBH binary hypothesis proposed for this source.
Plants, fungi and algae are important components of global biodiversity and are fundamental to all ecosystems. They are the basis for human well-being, providing food, materials and medicines. Specimens of all three groups of organisms are accommodated in herbaria, where they are commonly referred to as botanical specimens.The large number of specimens in herbaria provides an ample, permanent and continuously improving knowledge base on these organisms and an indispensable source for the analysis of the distribution of species in space and time critical for current and future research relating to global biodiversity. In order to make full use of this resource, a research infrastructure has to be built that grants comprehensive and free access to the information in herbaria and botanical collections in general. This can be achieved through digitization of the botanical objects and associated data.The botanical research community can count on a long-standing tradition of collaboration among institutions and individuals. It agreed on data standards and standard services even before the advent of computerization and information networking, an example being the Index Herbariorum as a global registry of herbaria helping towards the unique identification of specimens cited in the literature.In the spirit of this collaborative history, 51 representatives from 30 institutions advocate to start the digitization of botanical collections with the overall wall-to-wall digitization of the flat objects stored in German herbaria. Germany has 70 herbaria holding almost 23 million specimens according to a national survey carried out in 2019. 87% of these specimens are not yet digitized. Experiences from other countries like France, the Netherlands, Finland, the US and Australia show that herbaria can be comprehensively and cost-efficiently digitized in a relatively short time due to established workflows and protocols for the high-throughput digitization of flat objects.Most of the herbaria are part of a university (34), fewer belong to municipal museums (10) or state museums (8), six herbaria belong to institutions also supported by federal funds such as Leibniz institutes, and four belong to non-governmental organizations. A common data infrastructure must therefore integrate different kinds of institutions.Making full use of the data gained by digitization requires the set-up of a digital infrastructure for storage, archiving, content indexing and networking as well as standardized access for the scientific use of digital objects. A standards-based portfolio of technical components has already been developed and successfully tested by the Biodiversity Informatics Community over the last two decades, comprising among others access protocols, collection databases, portals, tools for semantic enrichment and annotation, international networking, storage and archiving in accordance with international standards. This was achieved through the funding by national and international programs and initiatives, which also paved the road for the German contribution to the Global Biodiversity Information Facility (GBIF).Herbaria constitute a large part of the German botanical collections that also comprise living collections in botanical gardens and seed banks, DNA- and tissue samples, specimens preserved in fluids or on microscope slides and more. Once the herbaria are digitized, these resources can be integrated, adding to the value of the overall research infrastructure. The community has agreed on tasks that are shared between the herbaria, as the German GBIF model already successfully demonstrates.We have compiled nine scientific use cases of immediate societal relevance for an integrated infrastructure of botanical collections. They address accelerated biodiversity discovery and research, biomonitoring and conservation planning, biodiversity modelling, the generation of trait information, automated image recognition by artificial intelligence, automated pathogen detection, contextualization by interlinking objects, enabling provenance research, as well as education, outreach and citizen science.We propose to start this initiative now in order to valorize German botanical collections as a vital part of a worldwide biodiversity data pool.
While patients with chronic hepatitis C virus (HCV) infection are treated in order to prevent liver-related morbidity and mortality, we rely on sustained virological response (SVR) as a virological biomarker to evaluate treatment efficacy in both clinical practice as well as in drug development. However, conclusive evidence for the clinical benefit of antiviral therapy or validity of SVR as surrogate marker, as derived from trials randomizing patients to a treatment or control arm, is lacking. In fact, the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis (HALT-C) trial recently showed an increased mortality rate among interferon-treated patients compared to untreated controls. Consequently, the recommendation to treat patients with chronic HCV infection was challenged.
Here, we argue that the possible harmful effect of long-term low-dose pegylated interferon mono therapy, as was observed in the HALT-C trial cohort, cannot be extrapolated to potentially curative short-term treatment regimens. Furthermore, we discuss SVR as a surrogate biomarker, based on numerous studies which indicated an association between SVR and improvements in health-related quality of life, hepatic inflammation and fibrosis, and portal pressure as well as a reduced risk for hepatocellular carcinoma (HCC), liver failure and mortality.
Background: Does the dogma of nephron sparing surgery (NSS) still stand for large renal masses? Available studies dealing with that issue are considerably biased often mixing imperative with elective indications for NSS and also including less malignant variants or even benign renal tumors. Here, we analyzed the oncological long-term outcomes of patients undergoing elective NSS or radical tumor nephrectomy (RN) for non-endophytic, large (≥7cm) clear cell renal carcinoma (ccRCC).
Methods: Prospectively acquired, clinical databases from two academic high-volume centers were screened for patients from 1980 to 2010. The query was strictly limited to patients with elective indications. Surgical complications were retrospectively assessed and classified using the Clavien-Dindo-classification system (CDS). Overall survival (OS) and cancer specific survival (CSS) were analyzed using the Kaplan-Meier-method and the log-rank test.
Results: Out of in total 8664 patients in the databases, 123 patients were identified (elective NSS (n = 18) or elective RN (n = 105)) for ≥7cm ccRCC. The median follow-up over all was 102 months (range 3–367 months). Compared to the RN group, the NSS group had a significantly longer median OS (p = 0.014) and median CSS (p = 0.04).
Conclusions: In large renal masses, NSS can be performed safely with acceptable complication rates. In terms of long-term OS and CSS, NSS was at least not inferior to RN. Our findings suggest that NSS should also be performed in patients presenting with renal tumors ≥7cm whenever technically feasible. Limitations include its retrospective nature and the limited availability of data concerning long-term development of renal function in the two groups.