Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
An experiment addressing electron capture (EC) decay of hydrogen-like 142Pm60+ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times for about 9000 individual EC decays have been measured by applying the single-ion decay spectroscopy method. Both visually and automatically analysed data can be described by a single exponential decay with decay constants of 0.0126(7)s−1 for automatic analysis and 0.0141(7)s−1 for manual analysis. If a modulation superimposed on the exponential decay curve is assumed, the best fit gives a modulation amplitude of merely 0.019(15), which is compatible with zero and by 4.9 standard deviations smaller than in the original observation which had an amplitude of 0.23(4).
EUSOBI and 30 national breast radiology bodies support mammography for population-based screening, demonstrated to reduce breast cancer (BC) mortality and treatment impact. According to the International Agency for Research on Cancer, the reduction in mortality is 40 % for women aged 50–69 years taking up the invitation while the probability of false-positive needle biopsy is <1 % per round and overdiagnosis is only 1–10 % for a 20-year screening. Mortality reduction was also observed for the age groups 40–49 years and 70–74 years, although with “limited evidence”. Thus, we firstly recommend biennial screening mammography for average-risk women aged 50–69 years; extension up to 73 or 75 years, biennially, is a second priority, from 40–45 to 49 years, annually, a third priority. Screening with thermography or other optical tools as alternatives to mammography is discouraged. Preference should be given to population screening programmes on a territorial basis, with double reading. Adoption of digital mammography (not film-screen or phosphor-plate computer radiography) is a priority, which also improves sensitivity in dense breasts. Radiologists qualified as screening readers should be involved in programmes. Digital breast tomosynthesis is also set to become “routine mammography” in the screening setting in the next future. Dedicated pathways for high-risk women offering breast MRI according to national or international guidelines and recommendations are encouraged.
Human endothelial circulating progenitor cells (CPCs) can differentiate to cardiomyogenic cells during co-culture with neonatal rat cardiomyocytes. Wnt proteins induce myogenic specification and cardiac myogenesis. Here, we elucidated the effect of Wnts on differentiation of CPCs to cardiomyogenic cells. CPCs from peripheral blood mononuclear cells were isolated from healthy volunteers and co-cultured with neonatal rat cardiomyocytes. 6–10 days after co-culture, cardiac differentiation was determined by α-sarcomeric actinin staining of human lymphocyte antigen-positive cells (fluorescence-activated cell-sorting analysis) and mRNA expression of human myosin heavy chain and atrial natriuretic peptide. Supplementation of co-cultures with Wnt11-conditioned medium significantly enhanced the differentiation of CPCs to cardiomyocytes (1.7 ± 0.3-fold), whereas Wnt3A-conditioned medium showed no effect. Cell fusion was not affected by Wnt11-conditioned medium. Because Wnts inhibit glycogen synthase kinase-3β, we further determined whether the glycogen synthase kinase-3β inhibitor LiCl also enhanced cardiac differentiation of CPCs. However, LiCl (10 mm) did not affect CPC differentiation. In contrast, Wnt11-conditioned medium time-dependently activated protein kinase C (PKC). Moreover, the PKC inhibitors bisindolylmaleimide I and III significantly blocked differentiation of CPCs to cardiomyocytes. PKC activation by phorbol 12-myristate 13-acetate significantly increased CPC differentiation to a similar extent as compared with Wnt11-conditioned medium. Our data demonstrate that Wnt11, but not Wnt3A, augments cardiomyogenic differentiation of human CPCs. Wnt11 promotes cardiac differentiation via the non-canonical PKC-dependent signaling pathway.