Refine
Year of publication
Document Type
- Article (22)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- 5-lipoxygenase; (1)
- DNA G-quadruplex (1)
- DNA pulldown (1)
- DNA-protein-interactions (1)
- LTP (1)
- aging (1)
- amyloid precursor protein (1)
- chloroplast membrane proteins (1)
- envelope membrane proteome approach comparison (1)
- hippocampus (1)
Institute
- Biochemie und Chemie (9)
- Pharmazie (8)
- Biowissenschaften (7)
- Exzellenzcluster Makromolekulare Komplexe (7)
- Medizin (5)
- Biochemie, Chemie und Pharmazie (4)
- Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (ZAFES) (2)
- Biodiversität und Klima Forschungszentrum (BiK-F) (1)
- Georg-Speyer-Haus (1)
- Informatik (1)
Allergy against birch pollen is among the most common causes of spring pollinosis in Europe and is diagnosed and treated using extracts from natural sources. Quality control is crucial for safe and effective diagnosis and treatment. However, current methods are very difficult to standardize and do not address individual allergen or isoallergen composition. MS provides information regarding selected proteins or the entire proteome and could overcome the aforementioned limitations. We studied the proteome of birch pollen, focusing on allergens and isoallergens, to clarify which of the 93 published sequence variants of the major allergen, Bet v 1, are expressed as proteins within one source material in parallel. The unexpectedly complex Bet v 1 isoallergen composition required manual data interpretation and a specific design of databases, as current database search engines fail to unambiguously assign spectra to highly homologous, partially identical proteins. We identified 47 non-allergenic proteins and all 5 known birch pollen allergens, and unambiguously proved the existence of 18 Bet v 1 isoallergens and variants by manual data analysis. This highly complex isoallergen composition raises questions whether isoallergens can be ignored or must be included for the quality control of allergen products, and which data analysis strategies are to be applied.
Der wissenschaftliche Fortschritt in Chemie, Biowissenschaften und Medizin basiert auf den immer detaillierteren Erkenntnissen über die molekularen Prozesse des Lebens. Eine Voraussetzung dafür sind Fortschritte bei den analytischen Methoden, Techniken und Instrumenten. In dem heute zur Verfügung stehendem Instrumentarium spielt die Massenspektrometrie eine zunehmend wichtige Rolle. Wenn aktuell ein neuer Doping-Skandal durch die Presse geht, sind immer massenspektrometrische Techniken im Spiel: Sie ermöglichen den Nachweis von erlaubten und verbotenen Substanzen aller Art – auch Dopingmitteln.
Carma-1 is required for B cell receptor-/CD40- and T cell receptor-/CD28-induced B- and T-cell activation via JNK and NF-betaB. In B cells, Carma-1 becomes phosphorylated by PKCbeta, leading to its oligomerization. Subsequent Bcl10 binding induces IKKbeta-activation and, thereby, canonical NF-KB signalling. Despite these findings it is still unknown how exactly Carma-1 is connected to the plasma membrane and to the IKK-complex. Therefore, we purified Carma-1 complexes from mouse CH12 B cells using anti-Carma-1 affinity columns. Mass spectrometric analyses of the column eluates demonstrated the presence of Carma-1 as well as three previously uncharacterized adaptor proteins in B cells, one of which was the Trk-fused gene (Tfg), an adaptor protein containing PB1 and coiledcoil domains. Whereas Tfg was originally identified as fusion partner of oncogenic Trk tyrosine kinase mutants, the normal cellular homologue of Tfg has so far not been described in B cells. However, Tfg has been shown in other systems to interact with IKKgamma and to enhance TNFinduced NF-KB activation. Tfg and Carma-1 co-localized at the plasma membrane and perinuclear structures in B cells. We further corroborated the interactions of Tfg, IKKgamma and Carma-1 by Blue Native gel electrophoresis, where Carma-1 and Tfg formed a 0.7–1 MDa complex. Ectopic expression of Tfg increased the molecular mass of IKKgamma complexes, fused IKKgamma, Bcl10 and Carma-1 complexes to a ~2 MDa complex, and increased basal and CD40-induced canonical activity of NF-KB and IKKbeta. In contrast, shRNA-mediated silencing of Tfg decreased CD40-induced IKKbeta activity. Very interestingly, in primary B cells, highest expression of Tfg was detected in marginal zone and B1 B cells, and Carma-1 and Tfg formed complexes in these B cells. Since Carma-1 is required for marginal zone B cell and B1 B cell development, we suggest that a functional interaction between Carma-1 and Tfg contributes to development and maintenance of these cells by means of canonical NF-KB signals.
Nep1 (Emg1) is a highly conserved nucleolar protein with an essential function in ribosome biogenesis. A mutation in the human Nep1 homolog causes Bowen–Conradi syndrome—a severe developmental disorder. Structures of Nep1 revealed a dimer with a fold similar to the SPOUT-class of RNA-methyltransferases suggesting that Nep1 acts as a methyltransferase in ribosome biogenesis. The target for this putative methyltransferase activity has not been identified yet. We characterized the RNA-binding specificity of Methanocaldococcus jannaschii Nep1 by fluorescence- and NMR-spectroscopy as well as by yeast three-hybrid screening. Nep1 binds with high affinity to short RNA oligonucleotides corresponding to nt 910–921 of M. jannaschii 16S rRNA through a highly conserved basic surface cleft along the dimer interface. Nep1 only methylates RNAs containing a pseudouridine at a position corresponding to a previously identified hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) in eukaryotic 18S rRNAs. Analysis of the methylated nucleoside by MALDI-mass spectrometry, HPLC and NMR shows that the methyl group is transferred to the N1 of the pseudouridine. Thus, Nep1 is the first identified example of an N1-specific pseudouridine methyltransferase. This enzymatic activity is also conserved in human Nep1 suggesting that Nep1 is the methyltransferase in the biosynthesis of m1acp3-Psi in eukaryotic 18S rRNAs.
High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided.
Background: Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and down-regulation of its major intracellular receptor, the alpha/beta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of sGC's heme and responsiveness to NO.
Results: sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here we show that oxidation-induced down-regulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand, BAY 58-2667, prevented sGC ubiquitination and stabilized both alpha and beta subunits.
Conclusion: Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC.
The adaptive response of Sorghum bicolor landraces from Egypt to drought stress and following recovery was analyzed using two-dimensional difference gel electrophoresis, 2D-DIGE. Physiological measurements and proteome alterations of accession number 11434, drought tolerant, and accession number 11431, drought sensitive, were compared to their relative control values after drought stress and following recovery. Differentially expressed proteins were analysed by Matrix assisted laser desorption ionisation time-of-flight mass spectrometry, MALDI-TOF-MS. Alterations in protein contents related to the energy balance, metabolism (sensu Mewes et al. 1997), and chaperons were the most apparent features to elucidate the differences between the drought tolerant and sensitive accessions. Further alterations in the levels of proteins related to transcription and protein synthesis are discussed.
Abstract: The hallmarks of Alzheimer’s disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.
Author Summary: More than 20 years ago, the amyloid precursor protein (APP) was identified as the precursor protein of the Aβ peptide, the main component of senile plaques in brains affected by Alzheimer’s disease. However, little is known about the physiological function of amyloid precursor protein. Allocating APP to the proteome of the structurally and functionally dynamic presynaptic active zone highlights APP as a hitherto unknown player within the presynaptic network. The hippocampus is the most prominent brain region for learning and memory consolidation, and a vulnerable target for neurodegenerative disease, e. g. Alzheimer’s disease. Therefore, our experimental design is focused on the hippocampal neurotransmitter release site. Currently, the underlying mechanism of how APP acts within presynaptic networks is still elusive. Within the scope of this research article, we constructed a network of APP within the presynaptic active zone and how deletion of APP affects these individual networks. We combine bioinformatics tools and biochemical approaches to address the dataset provided by proteomics. Furthermore, we could unravel that APP executes regulatory functions within the synaptic vesicle cycle, cytoskeletal rearrangements and Ca2+-homeostasis. Taken together, our findings offer a new perspective on the physiological function of APP in the central nervous system and may provide a molecular link to the pathogenesis of Alzheimer’s disease.
Background: One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP) which interact with complement regulator factor H (CFH) and factor H-like protein 1 (FHL1) or factor H-related protein 1 (CFHR1). In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi. Methodology/Principal Findings: To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement. Conclusions/Significance: In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi.
Nerve injury leads to sensitization mechanisms in the peripheral and central nervous system which involve transcriptional and post-transcriptional modifications in sensory nerves. To assess protein regulations in the spinal cord after injury of the sciatic nerve in the Spared Nerve Injury model (SNI) we performed a proteomic analysis using 2D-difference gel electrophoresis (DIGE) technology. Among approximately 2300 protein spots separated on each gel we detected 55 significantly regulated proteins after SNI whereof 41 were successfully identified by MALDI-TOF MS. Out of the proteins which were regulated in the DIGE analyses after SNI we focused on the carboxypeptidase A inhibitor latexin because protease dysfunctions contribute to the development of neuropathic pain. Latexin protein expression was reduced after SNI which could be confirmed by Western Blot analysis, quantitative RT-PCR and in-situ hybridisation. The decrease of latexin was associated with an increase of the activity of carboxypeptidase A indicating that the balance between latexin and carboxypeptidase A was impaired in the spinal cord after peripheral nerve injury due to a loss of latexin expression in spinal cord neurons. This may contribute to the development of cold allodynia because normalization of neuronal latexin expression in the spinal cord by AAV-mediated latexin transduction or administration of a small molecule carboxypeptidase A inhibitor significantly reduced acetone-evoked nociceptive behavior after SNI. Our results show the usefulness of proteomics as a screening tool to identify novel mechanisms of nerve injury evoked hypernociception and suggest that carboxypeptidase A inhibition might be useful to reduce cold allodynia.