Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Autism spectrum disorder (1)
- Connectivity (1)
- Cooperation (1)
- EEG (1)
- Graph theory (1)
- Hyperscanning (1)
- Joint actions (1)
- Randomized controlled trial (1)
- Social brain (1)
- Tempo-parietal junction (1)
Institute
- Medizin (7)
Background: Autism spectrum disorder (ASD) is characterized by impaired social communication and interaction, and stereotyped, repetitive behaviour and sensory interests. To date, there is no effective medication that can improve social communication and interaction in ASD, and effect sizes of behaviour-based psychotherapy remain in the low to medium range. Consequently, there is a clear need for new treatment options. ASD is associated with altered activation and connectivity patterns in brain areas which process social information. Transcranial direct current stimulation (tDCS) is a technique that applies a weak electrical current to the brain in order to modulate neural excitability and alter connectivity. Combined with specific cognitive tasks, it allows to facilitate and consolidate the respective training effects. Therefore, application of tDCS in brain areas relevant to social cognition in combination with a specific cognitive training is a promising treatment approach for ASD. Methods: A phase-IIa pilot randomized, double-blind, sham-controlled, parallel-group clinical study is presented, which aims at investigating if 10 days of 20-min multi-channel tDCS stimulation of the bilateral tempo-parietal junction (TPJ) at 2.0 mA in combination with a computer-based cognitive training on perspective taking, intention and emotion understanding, can improve social cognitive abilities in children and adolescents with ASD. The main objectives are to describe the change in parent-rated social responsiveness from baseline (within 1 week before first stimulation) to post-intervention (within 7 days after last stimulation) and to monitor safety and tolerability of the intervention. Secondary objectives include the evaluation of change in parent-rated social responsiveness at follow-up (4 weeks after end of intervention), change in other ASD core symptoms and psychopathology, social cognitive abilities and neural functioning post-intervention and at follow-up in order to explore underlying neural and cognitive mechanisms. Discussion: If shown, positive results regarding change in parent-rated social cognition and favourable safety and tolerability of the intervention will confirm tDCS as a promising treatment for ASD core-symptoms. This may be a first step in establishing a new and cost-efficient intervention for individuals with ASD.
At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful.
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.
Autism spectrum disorder and schizophrenia share a substantial number of etiologic and phenotypic characteristics. Still, no direct comparison of both disorders has been performed to identify differences and commonalities in brain structure. In this voxel based morphometry study, 34 patients with autism spectrum disorder, 21 patients with schizophrenia and 26 typically developed control subjects were included to identify global and regional brain volume alterations. No global gray matter or white matter differences were found between groups. In regional data, patients with autism spectrum disorder compared to typically developed control subjects showed smaller gray matter volume in the amygdala, insula, and anterior medial prefrontal cortex. Compared to patients with schizophrenia, patients with autism spectrum disorder displayed smaller gray matter volume in the left insula. Disorder specific positive correlations were found between mentalizing ability and left amygdala volume in autism spectrum disorder, and hallucinatory behavior and insula volume in schizophrenia. Results suggest the involvement of social brain areas in both disorders. Further studies are needed to replicate these findings and to quantify the amount of distinct and overlapping neural correlates in autism spectrum disorder and schizophrenia.
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD). However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion–recently discussed as a marker of social cognition–was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD.
A novel approach to measure brain-to-brain spatial and temporal alignment during positive empathy
(2022)
Empathy is defined as the ability to vicariously experience others’ suffering (vicarious pain) or feeling their joy (vicarious reward). While most neuroimaging studies have focused on vicarious pain and describe similar neural responses during the observed and the personal negative affective involvement, only initial evidence has been reported for the neural responses to others’ rewards and positive empathy. Here, we propose a novel approach, based on the simultaneous recording of multi-subject EEG signals and exploiting the wavelet coherence decomposition to measure the temporal alignment between ERPs in a dyad of interacting subjects. We used the Third-Party Punishment (TPP) paradigm to elicit the personal and vicarious experiences. During a positive experience, we observed the simultaneous presence in both agents of the Late Positive Potential (LPP), an ERP component related to emotion processing, as well as the existence of an inter-subject ERPs synchronization in the related time window. Moreover, the amplitude of the LPP synchronization was modulated by the presence of a human-agent. Finally, the localized brain circuits subtending the ERP-synchronization correspond to key-regions of personal and vicarious reward. Our findings suggest that the temporal and spatial ERPs alignment might be a novel and direct proxy measure of empathy.
Two-person neuroscience (2 PN) is a recently introduced conceptual and methodological framework used to investigate the neural basis of human social interaction from simultaneous neuroimaging of two or more subjects (hyperscanning). In this study, we adopted a 2 PN approach and a multiple-brain connectivity model to investigate the neural basis of a form of cooperation called joint action. We hypothesized different intra-brain and inter-brain connectivity patterns when comparing the interpersonal properties of joint action with non-interpersonal conditions, with a focus on co-representation, a core ability at the basis of cooperation. 32 subjects were enrolled in dual-EEG recordings during a computerized joint action task including three conditions: one in which the dyad jointly acted to pursue a common goal (joint), one in which each subject interacted with the PC (PC), and one in which each subject performed the task individually (Solo).
A combination of multiple-brain connectivity estimation and specific indices derived from graph theory allowed to compare interpersonal with non-interpersonal conditions in four different frequency bands. Our results indicate that all the indices were modulated by the interaction, and returned a significantly stronger integration of multiple-subject networks in the joint vs. PC and Solo conditions. A subsequent classification analysis showed that features based on multiple-brain indices led to a better discrimination between social and non-social conditions with respect to single-subject indices. Taken together, our results suggest that multiple-brain connectivity can provide a deeper insight into the understanding of the neural basis of cooperation in humans.