Refine
Year of publication
Document Type
- Article (20)
- Conference Proceeding (1)
- Preprint (1)
Language
- English (22)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- nivolumab (2)
- radiotherapy (2)
- temozolomide (2)
- 140Ce (1)
- AVM hemorrhage (1)
- Angiography (1)
- Antiplatelet therapy (1)
- Atomic and Molecular Physics (1)
- Cancer genomics (1)
- Cerebral vasospasm (1)
Institute
- Medizin (17)
- Physik (3)
- Geowissenschaften (2)
- ELEMENTS (1)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Sportwissenschaften (1)
Background: Nearly all patients with newly diagnosed glioblastoma experience recurrence following standard-of-care radiotherapy (RT) + temozolomide (TMZ). The purpose of the phase III randomized CheckMate 548 study was to evaluate RT + TMZ combined with the immune checkpoint inhibitor nivolumab (NIVO) or placebo (PBO) in patients with newly diagnosed glioblastoma with methylated MGMT promoter (NCT02667587).
Methods: Patients (N = 716) were randomized 1:1 to NIVO [(240 mg every 2 weeks × 8, then 480 mg every 4 weeks) + RT (60 Gy over 6 weeks) + TMZ (75 mg/m2 once daily during RT, then 150-200 mg/m2 once daily on days 1-5 of every 28-day cycle × 6)] or PBO + RT + TMZ following the same regimen. The primary endpoints were progression-free survival (PFS) and overall survival (OS) in patients without baseline corticosteroids and in all randomized patients.
Results: As of December 22, 2020, median (m)PFS (blinded independent central review) was 10.6 months (95% CI, 8.9-11.8) with NIVO + RT + TMZ vs 10.3 months (95% CI, 9.7-12.5) with PBO + RT + TMZ (HR, 1.1; 95% CI, 0.9-1.3) and mOS was 28.9 months (95% CI, 24.4-31.6) vs 32.1 months (95% CI, 29.4-33.8), respectively (HR, 1.1; 95% CI, 0.9-1.3). In patients without baseline corticosteroids, mOS was 31.3 months (95% CI, 28.6-34.8) with NIVO + RT + TMZ vs 33.0 months (95% CI, 31.0-35.1) with PBO + RT + TMZ (HR, 1.1; 95% CI, 0.9-1.4). Grade 3/4 treatment-related adverse event rates were 52.4% vs 33.6%, respectively.
Conclusions: NIVO added to RT + TMZ did not improve survival in patients with newly diagnosed glioblastoma with methylated or indeterminate MGMT promoter. No new safety signals were observed.
Formalin‐fixed, paraffin‐embedded (FFPE ), biobanked tissue samples offer an invaluable resource for clinical and biomarker research. Here, we developed a pressure cycling technology (PCT )‐SWATH mass spectrometry workflow to analyze FFPE tissue proteomes and applied it to the stratification of prostate cancer (PC a) and diffuse large B‐cell lymphoma (DLBCL ) samples. We show that the proteome patterns of FFPE PC a tissue samples and their analogous fresh‐frozen (FF ) counterparts have a high degree of similarity and we confirmed multiple proteins consistently regulated in PC a tissues in an independent sample cohort. We further demonstrate temporal stability of proteome patterns from FFPE samples that were stored between 1 and 15 years in a biobank and show a high degree of the proteome pattern similarity between two types of histological regions in small FFPE samples, that is, punched tissue biopsies and thin tissue sections of micrometer thickness, despite the existence of a certain degree of biological variations. Applying the method to two independent DLBCL cohorts, we identified myeloperoxidase, a peroxidase enzyme, as a novel prognostic marker. In summary, this study presents a robust proteomic method to analyze bulk and biopsy FFPE tissues and reports the first systematic comparison of proteome maps generated from FFPE and FF samples. Our data demonstrate the practicality and superiority of FFPE over FF samples for proteome in biomarker discovery. Promising biomarker candidates for PC a and DLBCL have been discovered.
Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability
(2023)
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.
Hypoxia enhances the antiglioma cytotoxicity of b10, a glycosylated derivative of betulinic acid
(2014)
B10 is a glycosylated derivative of betulinic acid with promising activity against glioma cells. Lysosomal cell death pathways appear to be essential for its cytotoxicity. We investigated the influence of hypoxia, nutrient deprivation and current standard therapies on B10 cytotoxicity. The human glioma cell lines LN-308 and LNT-229 were exposed to B10 alone or together with irradiation, temozolomide, nutrient deprivation or hypoxia. Cell growth and viability were evaluated by crystal violet staining, clonogenicity assays, propidium iodide uptake and LDH release assays. Cell death was examined using an inhibitor of lysosomal acidification (bafilomycin A1), a cathepsin inhibitor (CA074-Me) and a short-hairpin RNA targeting cathepsin B. Hypoxia substantially enhanced B10-induced cell death. This effect was sensitive to bafilomycin A1 and thus dependent on hypoxia-induced lysosomal acidification. Cathepsin B appeared to mediate cell death because either the inhibitor CA074-Me or cathepsin B gene silencing rescued glioma cells from B10 toxicity under hypoxia. B10 is a novel antitumor agent with substantially enhanced cytotoxicity under hypoxia conferred by increased lysosomal cell death pathway activation. Given the importance of hypoxia for therapy resistance, malignant progression, and as a result of antiangiogenic therapies, B10 might be a promising strategy for hypoxic tumors like malignant glioma.
Background: Addition of temozolomide (TMZ) to radiotherapy (RT) improves overall survival (OS) in patients with glioblastoma (GBM), but previous studies suggest that patients with tumors harboring an unmethylated MGMT promoter derive minimal benefit. The aim of this open-label, phase III CheckMate 498 study was to evaluate the efficacy of nivolumab (NIVO) + RT compared with TMZ + RT in newly diagnosed GBM with unmethylated MGMT promoter.
Methods: Patients were randomized 1:1 to standard RT (60 Gy) + NIVO (240 mg every 2 weeks for eight cycles, then 480 mg every 4 weeks) or RT + TMZ (75 mg/m2 daily during RT and 150–200 mg/m2/day 5/28 days during maintenance). The primary endpoint was OS.
Results: A total of 560 patients were randomized, 280 to each arm. Median OS (mOS) was 13.4 months (95% CI, 12.6 to 14.3) with NIVO + RT and 14.9 months (95% CI, 13.3 to 16.1) with TMZ + RT (hazard ratio [HR], 1.31; 95% CI, 1.09 to 1.58; P = .0037). Median progression-free survival was 6.0 months (95% CI, 5.7 to 6.2) with NIVO + RT and 6.2 months (95% CI, 5.9 to 6.7) with TMZ + RT (HR, 1.38; 95% CI, 1.15 to 1.65). Response rates were 7.8% (9/116) with NIVO + RT and 7.2% (8/111) with TMZ + RT; grade 3/4 treatment-related adverse event (TRAE) rates were 21.9% and 25.1%, and any-grade serious TRAE rates were 17.3% and 7.6%, respectively.
Conclusions: The study did not meet the primary endpoint of improved OS; TMZ + RT demonstrated a longer mOS than NIVO + RT. No new safety signals were detected with NIVO in this study. The difference between the study treatment arms is consistent with the use of TMZ + RT as the standard of care for GBM.
ClinicalTrials.gov NCT02617589
Highlights
• Consider tissue expanders for challenging DBS cases in PD patients with hardware erosion.
• Placement of tissue expander is essential in planning the reconstruction.
• MRI-compatibility of the tissue expander is paramount for shortening the total duration of anesthesia.
• Role of routine skin biopsies to identify PD patients at additional risk for developing scalp defects should be investigated.
The decay properties of the Pygmy Dipole Resonance (PDR) have been investigated in the semi-magic N=82 nucleus 140Ce using a novel combination of nuclear resonance fluorescence and γ–γ coincidence techniques. Branching ratios for transitions to low-lying excited states are determined in a direct and model-independent way both for individual excited states and for excitation energy intervals. Comparison of the experimental results to microscopic calculations in the quasi-particle phonon model exhibits an excellent agreement, supporting the observation that the Pygmy Dipole Resonance couples to the ground state as well as to low-lying excited states. A 10% mixing of the PDR and the [21+ x PDR] is extracted.
Background: Atypical intracerebral hemorrhage is a common form of primary manifestation of vascular malformations.
Objective: The aim of the present study is to determine clues to the cause of bleeding according to hemorrhage pattern (lobar, basal ganglia, infratentorial).
Methods: We retrospectively evaluated 343 consecutive neurosurgical patients with intracerebral hemorrhage (ICH), who were admitted to our neurosurgical department between 2006 and 2016. The study cohort includes only neurosurgical patients. Patients who underwent treatment by neurologists are not represented in this study. We assessed location of hemorrhage, hematoma volumes to rule out differences and predicitve variables for final outcome.
Results: In 171 cases (49.9%) vascular malformations, such as arteriovenous malformations (AVMs), cavernomas, dural fistulas and aneurysms were the cause of bleeding. 172 (50.1%) patients suffered from an intracerebral hemorrhage due to amyloid angiopathy or long standing hypertension. In patients with infratentorial hemorrhage a malformation was more frequently detected as in patients with supratentorial hemorrhage (36% vs. 16%, OR 2.9 [1.8;4.9], p<0.001). Among the malformations AVMs were most common (81%). Hematoma expansion was smaller in vascular malformation than non-malformation caused bleeding (24.1 cm3 vs. 64.8 cm3, OR 0.5 [0.4;0.7], p < 0.001,). In 6 (2.1%) cases diagnosis remained unclear. Final outcome was more favorable in patients with vascular malformations (63% vs. 12%, OR 12.8 [4.5;36.2], p<0.001).
Conclusion: Localization and bleeding patterns are predictive factors for origin of the hemorrhage. These predictive factors should quickly lead to appropriate vascular diagnostic measures. However, due to the inclusion criteria the validity of the study is limited and multicentre studies with further testing in general ICH patients are required.