Refine
Year of publication
Document Type
- Article (48)
- Preprint (8)
- Doctoral Thesis (1)
Has Fulltext
- yes (57)
Is part of the Bibliography
- no (57)
Keywords
- cancer (5)
- drug resistance (5)
- neuroblastoma (5)
- ABCB1 (4)
- antiviral therapy (4)
- COVID-19 (3)
- ABCC1 (2)
- ABCG2 (2)
- Chemotherapy (2)
- SARS-CoV-2 (2)
Institute
The question of whether most gliomas are infected with human cytomegalovirus (HCMV) has been under dispute for more than 10 years. We recently reported our failure to detect HCMV in gliomas in Neuro-Oncology.1 Our article was accompanied by 2 related editorials,2,3 one of which boldly criticized our approach.3 Instead of fighting a petty, ivory tower dispute, we would like to lobby for a serious collaborative approach to providing conclusive evidence on the presence of HCMV in glioma (and other cancers). Since we developed the concept of oncomodulation (ie, that HCMV …
Background: H5N1 influenza vaccines, including live intranasal, appear to be relatively less immunogenic compared to seasonal analogs. The main influenza virus surface glycoprotein hemagglutinin (HA) of highly pathogenic avian influenza viruses (HPAIV) was shown to be more susceptible to acidic pH treatment than that of human or low pathogenic avian influenza viruses. The acidification machinery of the human nasal passageway in response to different irritation factors starts to release protons acidifying the mucosal surface (down to pH of 5.2). We hypothesized that the sensitivity of H5 HA to the acidic environment might be the reason for the low infectivity and immunogenicity of intranasal H5N1 vaccines for mammals. Methodology/Principal Findings: We demonstrate that original human influenza viruses infect primary human nasal epithelial cells at acidic pH (down to 5.4), whereas H5N1 HPAIVs lose infectivity at pH <= 5.6. The HA of A/Vietnam/1203/04 was modified by introducing the single substitution HA2 58K -> I, decreasing the pH of the HA conformational change. The H5N1 reassortants containing the indicated mutation displayed an increased resistance to acidic pH and high temperature treatment compared to those lacking modification. The mutation ensured a higher viral uptake as shown by immunohistochemistry in the respiratory tract of mice and 25 times lower mouse infectious dose50. Moreover, the reassortants keeping 58K -> I mutation designed as a live attenuated vaccine candidate lacking an NS1 gene induced superior systemic and local antibody response after the intranasal immunization of mice. Conclusion/Significance: Our finding suggests that an efficient intranasal vaccination with a live attenuated H5N1 virus may require a certain level of pH and temperature stability of HA in order to achieve an optimal virus uptake by the nasal epithelial cells and induce a sufficient immune response. The pH of the activation of the H5 HA protein may play a substantial role in the infectivity of HPAIVs for mammals.
Background Chemoresistance acquisition may influence cancer cell biology. Here, bioinformatics analysis of gene expression data was used to identify chemoresistance-associated changes in neuroblastoma biology. Results Bioinformatics analysis of gene expression data revealed that expression of angiogenesis-associated genes significantly differs between chemosensitive and chemoresistant neuroblastoma cells. A subsequent systematic analysis of a panel of 14 chemosensitive and chemoresistant neuroblastoma cell lines in vitro and in animal experiments indicated a consistent shift to a more pro-angiogenic phenotype in chemoresistant neuroblastoma cells. The molecular mechanims underlying increased pro-angiogenic activity of neuroblastoma cells are individual and differ between the investigated chemoresistant cell lines. Treatment of animals carrying doxorubicin-resistant neuroblastoma xenografts with doxorubicin, a cytotoxic drug known to exert anti-angiogenic activity, resulted in decreased tumour vessel formation and growth indicating chemoresistance-associated enhanced pro-angiogenic activity to be relevant for tumour progression and to represent a potential therapeutic target. Conclusions A bioinformatics approach allowed to identify a relevant chemoresistance-associated shift in neuroblastoma cell biology. The chemoresistance-associated enhanced pro-angiogenic activity observed in neuroblastoma cells is relevant for tumour progression and represents a potential therapeutic target.
Glycyrrhizin is known to exert antiviral and anti-inflammatory effects. Here, the effects of an approved parenteral glycyrrhizin preparation (Stronger Neo-Minophafen C) were investigated on highly pathogenic influenza A H5N1 virus replication, H5N1-induced apoptosis, and H5N1-induced pro-inflammatory responses in lung epithelial (A549) cells. Therapeutic glycyrrhizin concentrations substantially inhibited H5N1-induced expression of the pro-inflammatory molecules CXCL10, interleukin 6, CCL2, and CCL5 (effective glycyrrhizin concentrations 25 to 50 µg/ml) but interfered with H5N1 replication and H5N1-induced apoptosis to a lesser extent (effective glycyrrhizin concentrations 100 µg/ml or higher). Glycyrrhizin also diminished monocyte migration towards supernatants of H5N1-infected A549 cells. The mechanism by which glycyrrhizin interferes with H5N1 replication and H5N1-induced pro-inflammatory gene expression includes inhibition of H5N1-induced formation of reactive oxygen species and (in turn) reduced activation of NFKappaB, JNK, and p38, redox-sensitive signalling events known to be relevant for influenza A virus replication. Therefore, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.
Die vorliegende Arbeit gliederte sich in 3 Teilbereiche. Der erste Teilbereich beschäftigte sich mit der antiviralen in vitro Wirkung von EDDS (Ethylendiamindinbernsteinsäure), sowie mit der Wirkung von EDDS, DTPA (Diethylentriaminpentaessigsäure) und DFO (Desferrioxamin) im Tiermodell. EDDS zeigte in vitro eine vielversprechende Wirkung gegenüber verschiedenen HCMV Stämmen. Hierunter befanden sich GCV und HPMPCresistente Stämme. Dies ist von großer Bedeutung für die Entwicklung neuer Wirkstoffe, da die Therapie von HCMVbedingten Erkrankungen mit hohen Nebenwirkungen verbunden ist und zudem durch vermehrtes Auftreten von Resistenzen gegenüber den etablierten Therapeutika GCV, HPMPC und Foscarnet erschwert wird. Die invitroDaten legen einen ähnlichen antiviralen Wirkmechanismus des EDDS verglichen mit DTPA nahe. Diese Ähnlichkeit wird durch die enge strukturelle Verwandschaft der Stoffe noch unterstrichen. Im Mausmodell zeigte jedoch keiner der 3 untersuchten Chelatoren eine erfolgversprechende protektive Wirkung gegenüber MCMVInfektionen. Damit wurden vorangegangene Untersuchungen im Rattenmodell bestätigt. Trotz vielversprechender anderslautender Ergebnisse, die auf eine invivoWirkung von DFO gegenüber CMVInfektionen hinwiesen, scheint damit der Einsatz der Chelatoren aufgrund ihrer sehr kurzen Halbwertszeit im Körper stark limitiert. Der zweite Teil der Dissertation befaßt sich mit der Entwicklung und Untersuchung von peptidischen Wirkstoffträgersystemen für DTPA. Hierbei ließen sich reproduzierbar lösliche HSADTPA und GelBDTPAKonjugate, sowie HSADTPA und GelBDTPANP herstellen. Die antivirale und die antitumorale Wirkung dieser Konjugate wurde in vitro untersucht. Da für die antitumorale Wirkung von DTPA bisher keine Daten vorlagen, wurde zunächst die Cytotoxizität in einer NBZellinie und in 3 BrustkrebsZellinien bestimmt. Als Vergleich dienten HFF. Es zeigte sich, daß DTPA in unterschiedlichen Konzentrationen gegenüber den untersuchten Zellinien cytotoxisch war, eine Tumorspezifität konnte jedoch nicht festgestellt werden. Die Cytotoxizität und die antivirale Wirkung des DTPA wurden in vitro durch Bindung an die unterschiedlichen peptidischen Trägersysteme deutlich erhöht. Dies führte jedoch nicht zu einer Erhöhung der therapeutischen Breite, da HFF in gleichem Maße stärker geschädigt wurden. Trotzdem bieten die Trägersystem Zubereitungen im Hinblick auf eine invivoAnwendung einige Vorteile. Es könnten geringere Mengen DTPA eingesetzt werden, was eine verringerte Ausschwemmung von Metallionen zur Folge hätte. Neben einer verlängerten Zirkulationszeit im Organismus könnte die veränderte Körperverteilung zu Verbesserungen führen. Im Falle der antitumoralen Anwendung wäre dies eine Anreicherung im Tumor aufgrund des EPREffektes. Für die antivirale Anwendung wären die Anreicherung in entzündeten Geweben, sowie die Anreicherung in Monozyten und Makrophagen von großem Interesse, da diesen Zellen ein entscheidender Anteil an dem durch CMV verursachten Multiorganbefall zugerechnet wird. Trotzdem bedarf der invivoEinsatz einer eingehenden Evaluierung und erscheint aufgrund der geringen therapeutische Breite insbesondere im Hinblick auf die Therapie von Tumoren stark eingeschränkt. Bezüglich des cytotoxischen Mechanismus weist die Wirkung der DTPAKonjugate darauf hin, daß DTPA den Zellzyklus und die Virusreplikation durch Wechselwirkung mit der Zellmembran und dadurch Veränderung der Signaltransduktion beeinflußt. Da eine geringere DTPAMenge größere Effekte verursacht, erscheint es unwahrscheinlich, daß die Komplexierung von Metallionen für die Wirkungen verantwortlich war. Im dritten Teil dieser Dissertation wurde eine PLANPTrägersystem für das antitumoral wirksame Enzym BSRNase entwickelt. BSRNase zeigte in vitro und bei intratumoraler Applikation sehr vielversprechende, selektive antitumorale Effekte gegenüber proliferierenden und ruhenden Tumorzellen. Die systemische Applikation war jedoch nicht erfolgreich. Dieses Scheitern wurde auf hohe Antigenität, kurze Halbwertszeit der Substanz im Körper und auf eine ungenügende Körperverteilung zurückgeführt. NP sind geeignet die Zirkulation im Körper zu verlängern und reichern sich in Tumoren aufgrund des EPREffektes an. PLANP wurden ausgewählt, da sie BSRNase in ausreichendem Maß binden und da PLA ein bioabbaubares und bioverträgliches Material ist. In vitro unterschied sich die nanopartikuläre Zubereitung bei der Wirkung gegenüber normalen, Lymphom und Leukämiezellen nicht. Beide BSRNaseZubereitungen induzierten Apoptose in parentalen und chemoresistenten Krebszellen. Normale Zellen wurden nicht in ihrer Viabilität beeinträchtigt. Die aspermatogenen und antiembryonalen Wirkungen von BSRNaseZubereitungen weisen auf ihre antitumoralen Eigenschaften hin. In diesen beiden Testsystemen übertraf die nanopartikuläre Zubereitung die Wirkung der BSRNaseLösung. InvivoVersuche müssen nun den tatsächlichen Stellenwert der BSRNasePLANP zeigen.
Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein-AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport.
Background: Various kinase inhibitors are known to be ATP-binding cassette (ABC) transporter substrates and resistance acquisition to kinase inhibitors has been associated to increased ABC transporter expression. Here, we investigated the role of the ABC transporters ABCB1, ABCC1, and ABCG2 during melanoma cell resistance acquisition to the V600-mutant BRAF inhibitors PLX4032 (vemurafenib) and PLX4720. PLX4032 had previously been shown to interfere with ABCB1 and ABCG2. PLX4720 had been demonstrated to interact with ABCB1 but to a lower extent than PLX4032.
Findings: PLX4032 and PLX4720 affected ABCC1- and ABCG2-mediated drug transport in a similar fashion. In a panel of 16 V600E BRAF-mutated melanoma cell lines consisting of four parental cell lines and their sub-lines with acquired resistance to PLX4032, PLX4720, vincristine (cytotoxic ABCB1 and ABCC1 substrate), or mitoxantrone (cytotoxic ABCG2 substrate), we detected enhanced ABC transporter expression in 4/4 cytotoxic ABC transporter substrate-resistant, 3/4 PLX4720-resistant, and 1/4 PLX4032-resistant melanoma cell lines.
Conclusion: PLX4032 has the potential to induce ABC transporter expression but this potential is lower than that of PLX4720 or cytotoxic ABC transporter substrates. Since ABC transporters confer multi-drug resistance, this is of relevance for the design of next-line therapies.
Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549rDOX20) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468r5-FU2000) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549rDOX20 and MDA-MB-468r5-FU2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer.
The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin.
The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.