Refine
Year of publication
Language
- English (66)
Has Fulltext
- yes (66)
Is part of the Bibliography
- no (66)
Keywords
- RHIC (2)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Cold nuclear matter effects (1)
- Collectivity (1)
- Correlation (1)
- Di-hadron correlations (1)
- Diffraction (1)
- Elastic scattering (1)
- Flow (1)
Institute
- Physik (65)
We present the results of charged particle fluctuations measurements in Au+Au collisions at sqrt[sNN ]=130 GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well as for identified charged pions, kaons, and protons. The net charge dynamical fluctuations are found to be large and negative providing clear evidence that positive and negative charged particle production is correlated within the pseudorapidity range investigated. Correlations are smaller than expected based on model-dependent predictions for a resonance gas or a quark-gluon gas which undergoes fast hadronization and freeze-out. Qualitative agreement is found with comparable scaled p+p measurements and a heavy ion jet interaction generation model calculation based on independent particle collisions, although a small deviation from the 1/N scaling dependence expected from this model is observed.
The transverse mass spectra and midrapidity yields for Xi s and Omega s are presented. For the 10% most central collisions, the Xi -bar+/h- ratio increases from the Super Proton Synchrotron to the Relativistic Heavy Ion Collider energies while the Xi -/h- stays approximately constant. A hydrodynamically inspired model fit to the Xi spectra, which assumes a thermalized source, seems to indicate that these multistrange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to pi , K, p, and Lambda s.
We present STAR measurements of charged hadron production as a function of centrality in Au+Au collisions at sqrt[sNN ]=130 GeV . The measurements cover a phase space region of 0.2< pT <6.0 GeV/c in transverse momentum and -1< eta <1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5< | eta | <1 are reported and compared to our previously published results for | eta | <0.5 . No significant difference is seen for inclusive pT distributions of charged hadrons in these two pseudorapidity bins. We measured dN/d eta distributions and truncated mean pT in a region of pT > pcutT , and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured pT region. The relative importance of hard scattering processes is investigated through binary scaling fraction of particle production.
Midrapidity open charm spectra from direct reconstruction of D0(D0-bar)-->K± pi ± in d+Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at sqrt[sNN]=200 GeV are reported. The D0(D0-bar) spectrum covers a transverse momentum (pT) range of 0.1<pT<3 GeV/c, whereas the electron spectra cover a range of 1<pT<4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at midrapidity for open charm production from d+Au collisions at BNL RHIC is d sigma NNcc-bar/dy=0.30±0.04(stat)±0.09(syst) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Azimuthal anisotropy (v2) and two-particle angular correlations of high pT charged hadrons have been measured in Au+Au collisions at sqrt[sNN]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pT partons. The monotonic rise of v2(pT) for pT<2 GeV/c is consistent with collective hydrodynamical flow calculations. At pT>3 GeV/c, a saturation of v2 is observed which persists up to pT=6 GeV/c.
Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (nonflow correlations). Using data for Au + Au collisions at sqrt[sNN]=130 GeV from the STAR time projection chamber, it is found that four-particle correlation analyses can reliably separate flow and nonflow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of 2. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.
The STAR Collaboration reports the first observation of exclusive rho 0 photoproduction, AuAu-->AuAu rho 0, and rho 0 production accompanied by mutual nuclear Coulomb excitation, AuAu-->Au [star] Au [star] rho 0, in ultraperipheral heavy-ion collisions. The rho 0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt[sNN]=130 GeV agree with theoretical predictions treating rho 0 production and Coulomb excitation as independent processes.
We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, Lambda , and Lambda -bar at midrapidity in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider. The value of v2 as a function of transverse momentum, pt, of the produced particle and collision centrality is presented for both particles up to pt~3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.