Refine
Year of publication
Language
- English (1787)
Has Fulltext
- yes (1787)
Is part of the Bibliography
- no (1787)
Keywords
- Heavy Ion Experiments (22)
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Hadron-Hadron Scattering (15)
- Hadron-Hadron scattering (experiments) (11)
- LHC (10)
- Particle and Resonance Production (10)
- QCD (9)
- Quarkonium (8)
Institute
- Physik (1778)
- Frankfurt Institute for Advanced Studies (FIAS) (1111)
- Informatik (1076)
- Medizin (6)
- Informatik und Mathematik (3)
- Hochschulrechenzentrum (2)
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons.
We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.
Search for the reaction channel e⁺e⁻ → ηcηπ⁺π⁻ at center-of-mass energies from 4.23 to 4.60 GeV
(2021)
Using data collected with the BESIII detector operating at the Beijing Electron Positron Collider, we search for the process 𝑒+𝑒−→𝜂𝑐𝜂𝜋+𝜋−. The search is performed using five large datasets recorded at center-of-mass energies of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV. The 𝜂𝑐 meson is reconstructed in 16 exclusive decay modes. No signal is observed in the 𝜂𝑐 mass region at any center-of-mass energy. The upper limits on the reaction cross sections are determined to be 6.2, 10.8, 27.6, 22.6 and 23.7 pb at the 90% confidence level at the center-of-mass energies listed above.
We report on an analysis of the decay J/ψ→γπ0η′ using a sample of (1310.6±7.0)× 106 J/ψ events collected with the BESIII detector. We search for the CP-violating process ηc→π0η′ and a dark gauge boson U′ in J/ψ→U′η′, U′→γπ0, π0→γγ. No evidence of an ηc signal is observed in the π0η′ invariant-mass spectrum and the upper limit of the branching fraction is determined to be 7.2× 10−5 at the 90\% confidence level. We also find no evidence of U′ production and set upper limits at the 90\% confidence level on the product branching fraction B(J/ψ→U′η′)×B(U′→π0γ) in the range between (0.8−6.5)×10−7 for 0.2 ≤mU′≤2.1GeV/c2. In addition, we study the process J/ψ→ωη′ with ω→γπ0. The branching fraction of J/ψ→ωη′ is found to be (1.87±0.09±0.12)×10−4, where the first uncertainty is statistical and the second is systematic, with a precision that is improved by a factor of 1.4 over the previously published BESIII measurement.
Using a data sample of (448.1±2.9)×106 ψ(3686) decays collected by the BESIII detector at the Beijing Electron Positron Collider (BEPCII), we observe the decays χcJ→ϕϕη (J=0, 1, 2), where the χcJ are produced via the radiative processes ψ(3686)→γχcJ. The branching fractions are measured to be B(χc0→ϕϕη)=(8.41±0.74±0.62)×10−4, B(χc1→ϕϕη)=(2.96±0.43±0.22)×10−4, and B(χc2→ϕϕη)=(5.33±0.52±0.39)×10−4, where the first uncertainties are statistical and the second are systematic. We also search for intermediate states in the ϕϕ or ηϕ combinations, but no significant structure is seen due to the limited statistics.
Using e+e− collision data samples with center-of-mass energies ranging from 2.000 to 2.644 GeV, collected by the BESIII detector at the BEPCII collider, and with a total integrated luminosity of 300 pb^{-1}, a partial-wave analysis is performed for the process e+e−→K+K−π0π0. The total Born cross sections for the process e+e−→K+K−π0π0, as well as the Born cross sections f or the subprocesses e+e−→ϕπ0π0, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+(892)K∗−(892), are measured versus the center-of-mass energy. The corresponding results for e+e−→K+K−π0π0 and ϕπ0π0 are consistent with those of BaBar and have much improved this http URL analyzing the cross sections for the four subprocesses, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+K∗−, a structure with mass M = (2126.5 ± 16.8 ± 12.4)~MeV/c^{2} and width Γ = (106.9 ± 32.1 ± 28.1)~MeV is observed with an overall statistical significance of 6.3 σ, although with very limited significance in the subprocesses e+e−→K+1(1270)K− and K∗+(892)K∗−(892). The resonant parameters of the observed structure suggest it can be identified with the ϕ(2170), thus the results provide valuable input to the internal nature of the ϕ(2170).
Using e+e− collision data samples with center-of-mass energies ranging from 2.000 to 2.644 GeV, collected by the BESIII detector at the BEPCII collider, and with a total integrated luminosity of 300 pb^{-1}, a partial-wave analysis is performed for the process e+e−→K+K−π0π0. The total Born cross sections for the process e+e−→K+K−π0π0, as well as the Born cross sections f or the subprocesses e+e−→ϕπ0π0, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+(892)K∗−(892), are measured versus the center-of-mass energy. The corresponding results for e+e−→K+K−π0π0 and ϕπ0π0 are consistent with those of BaBar and have much improved this http URL analyzing the cross sections for the four subprocesses, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+K∗−, a structure with mass M = (2126.5 ± 16.8 ± 12.4)~MeV/c^{2} and width Γ = (106.9 ± 32.1 ± 28.1)~MeV is observed with an overall statistical significance of 6.3 σ, although with very limited significance in the subprocesses e+e−→K+1(1270)K− and K∗+(892)K∗−(892). The resonant parameters of the observed structure suggest it can be identified with the ϕ(2170), thus the results provide valuable input to the internal nature of the ϕ(2170).
Measurement of branching fractions for D meson decaying into ϕ meson and a pseudoscalar meson
(2019)
The four decay modes D0 → φπ0, D0 → φη, D+ → φπ+, and D+ → φK + are studied by using a data sample taken at the centre-of-mass energy √s = 3.773 GeV with the BESIII detector, corresponding to an integrated luminosity of 2.93 fb−1. The branching fractions of the first three decay modes are measured to be B(D0 → φπ0) = (1.168 ± 0.028 ± 0.028) × 10−3, B(D0 → φη) = (1.81 ± 0.46 ± 0.06) × 10−4, and B(D+ → φπ+) = (5.70 ± 0.05 ± 0.13) × 10−3, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the upper limit of the branching fraction for D+ → φK+ is given to be 2.1 × 10−5 at the 90% confidence level. The ratio of B(D0 → φπ0) to B(D+ → φπ+) is calculated to be (20.49 ± 0.50 ± 0.45)%, which is consistent with the theoretical prediction based on isospin symmetry between these two decay modes.
Using a low background data sample of 9.7×105 𝐽/𝜓→𝛾𝜂′, 𝜂′→𝛾𝜋+𝜋− events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of 𝜂′→𝛾𝜋+𝜋− are studied with both model-dependent and model-independent approaches. The contributions of 𝜔 and the 𝜌(770)−𝜔 interference are observed for the first time in the decays 𝜂′→𝛾𝜋+𝜋− in both approaches. Additionally, a contribution from the box anomaly or the 𝜌(1450) resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
The process 𝑒+𝑒−→𝜙𝜂′ has been studied for the first time in detail using data sample collected with the BESIII detector at the BEPCII collider at center of mass energies from 2.05 to 3.08 GeV. A resonance with quantum numbers 𝐽𝑃𝐶=1−− is observed with mass 𝑀=(2177.5±4.8(stat)±19.5(syst))MeV/𝑐2 and width Γ=(149.0±15.6(stat)±8.9(syst)) MeV with a statistical significance larger than 10𝜎, including systematic uncertainties. If the observed structure is identified with the 𝜙(2170), then the ratio of partial width between the 𝜙𝜂′ by BESIII and 𝜙𝜂 by BABAR is (ℬ𝑅𝜙𝜂Γ𝑅𝑒𝑒)/(ℬ𝑅𝜙𝜂′Γ𝑅𝑒𝑒)=0.23±0.10(stat)±0.18(syst), which is smaller than the prediction of the 𝑠¯𝑠𝑔 hybrid models by several orders of magnitude.
A partial-wave analysis of the decay 𝐽/𝜓→𝐾+𝐾−𝜋0 has been made using (223.7±1.4)×106 𝐽/𝜓 events collected with the BESIII detector in 2009. The analysis, which is performed within the isobar-model approach, reveals contributions from 𝐾*2(1430)±, 𝐾*2(1980)± and 𝐾*4(2045)± decaying to 𝐾±𝜋0. The two latter states are observed in 𝐽/𝜓 decays for the first time. Two resonance signals decaying to 𝐾+𝐾− are also observed. These contributions cannot be reliably identified and their possible interpretations are discussed. The measured branching fraction 𝐵(𝐽/𝜓→𝐾+𝐾−𝜋0) of (2.88±0.01±0.12)×10−3 is more precise than previous results. Branching fractions for the reported contributions are presented as well. The results of the partial-wave analysis differ significantly from those previously obtained by BESII and BABAR.