Refine
Year of publication
Language
- English (598)
Has Fulltext
- yes (598)
Is part of the Bibliography
- no (598)
Keywords
- BESIII (19)
- e +-e − Experiments (19)
- Branching fraction (14)
- Particle and Resonance Production (9)
- Charm Physics (7)
- Spectroscopy (6)
- Hadronic decays (5)
- Quarkonium (5)
- Branching fractions (4)
- Charmonium (4)
Institute
- Physik (594)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
Using data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.178 to 4.600 GeV, we study the process eþe− → π0Xð3872Þγ and search for Zcð4020Þ0 → Xð3872Þγ. We find no significant signal and set upper limits on σðeþe− → π0Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ and σðeþe− → π0Zcð4020Þ0Þ · BðZcð4020Þ0 → Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ for each energy point at 90% confidence level, which is of the order of several tenths pb.
The electromagnetic process is studied with the initial-state-radiation technique using 7.5 fb−1 of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the effective form factor of the proton are measured from the production threshold to 3.0 GeV/ using the invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.
Study of the decay Dₛ⁺ → π⁺π⁺π⁻η and observation of the W-annihilation decay Dₛ⁺ → a₀(980)⁺ρ⁰
(2021)
The decay 𝐷+𝑠→𝜋+𝜋+𝜋−𝜂 is observed for the first time, using 𝑒+𝑒− collision data corresponding to an integrated luminosity of 6.32 fb−1, collected by the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV. The absolute branching fraction for this decay is measured to be ℬ(𝐷+𝑠→𝜋+𝜋+𝜋−𝜂)=(3.12±0.13stat±0.09syst)%. The first amplitude analysis of this decay reveals the substructures in 𝐷+𝑠→𝜋+𝜋+𝜋−𝜂 and determines the relative fractions and the phases among these substructures. The dominant intermediate process is 𝐷+𝑠→𝑎1(1260)+𝜂,𝑎1(1260)+→𝜌(770)0𝜋+ with a branching fraction of (1.73±0.14stat±0.08syst)%. We also observe the 𝑊-annihilation process 𝐷+𝑠→𝑎0(980)+𝜌(770)0, 𝑎0(980)+→𝜋+𝜂 with a branching fraction of (0.21±0.08stat±0.05syst)%, which is larger than the branching fractions of other measured pure 𝑊-annihilation decays by 1 order of magnitude.
The Born cross sections and effective form factors for process 𝑒+𝑒−→Ξ−¯Ξ+ are measured at eight center-of-mass energies between 2.644 and 3.080 GeV, using a total integrated luminosity of 363.9 pb−1 𝑒+𝑒− collision data collected with the BESIII detector at BEPCII. After performing a fit to the Born cross section of 𝑒+𝑒−→Ξ−¯Ξ+, no significant threshold effect is observed.
Using a data sample of 4.481×108 𝜓(3686) events collected with the BESIII detector, we report the first observation of the four-lepton-decays 𝐽/𝜓→𝑒+𝑒−𝑒+𝑒− and 𝐽/𝜓→𝑒+𝑒−𝜇+𝜇− utilizing the process 𝜓(3686)→𝜋+𝜋−𝐽/𝜓. The branching fractions are determined to be [5.48±0.31(stat)±0.45(syst)]×10−5 and [3.53±0.22(stat)±0.13(syst)]×10−5, respectively. The results are consistent with theoretical predictions. No significant signal is observed for 𝐽/𝜓→𝜇+𝜇−𝜇+𝜇−, and an upper limit on the branching fraction is set at 1.6×10−6 at the 90% confidence level. A 𝐶𝑃 asymmetry observable is constructed for the first two channels, which is measured to be (−0.012±0.054±0.010) and (0.062±0.059±0.006), respectively. No evidence for 𝐶𝑃 violation is observed in this process.
Based on 4.481×108 ψ(3686) events collected with the BESIII detector at BEPCII, the branching fraction of the isospin violating decay ψ(3686)→Σ¯0Λ+c.c. is measured to be (1.60±0.31±0.13 ± 0.58)×10−6, where the first uncertainty is statistical, the second is systematic, and the third is the uncertainty arising from interference with the continuum. This result is significantly smaller than the measurement based on CLEO-c data sets. The decays χcJ→ΛΛ¯ are measured via ψ(3686)→γχcJ, and the branching fractions are determined to be B(χc0→ΛΛ¯)=(3.64±0.10±0.10±0.07)×10−4, B(χc1→ΛΛ¯)=(1.31±0.06±0.06±0.03)×10−4, B(χc2→ΛΛ¯)=(1.91±0.08±0.17±0.04)×10−4, where the third uncertainties are systematic due to the ψ(3686)→γχcJ branching fractions.
Using 6.32 fb−1 of electron-positron collision data recorded by the BESIII detector at center-of-mass energies between 4.178 and 4.226~GeV, we present the first search for the decay D+s→a0(980)0e+νe, a0(980)0→π0η, which could proceed via a0(980)-f0(980) mixing. No significant signal is observed. An upper limit of 1.2×10−4 at the 90% confidence level is set on the product of the branching fractions of D+s→a0(980)0e+νe and a0(980)0→π0η decays.
The decays D → K−π+π+π− and D → K−π+π 0 are studied in a sample of quantum-correlated DD¯ pairs produced through the process e+e− → ψ(3770) → DD¯, exploiting a data set collected by the BESIII experiment that corresponds to an integrated luminosity of 2.93 fb−1 . Here D indicates a quantum superposition of a D0 and a D¯ 0 meson. By reconstructing one neutral charm meson in a signal decay, and the other in the same or a different final state, observables are measured that contain information on the coherence factors and average strong-phase differences of each of the signal modes. These parameters are critical inputs in the measurement of the angle γ of the Unitarity Triangle in B− → DK− decays at the LHCb and Belle II experiments. The coherence factors are determined to be RK3π = 0.52+0.12−0.10 and RKππ0 = 0.78 ± 0.04, with values for the average strong-phase differences that are δ K3π D = (167+31−19)◦ and δKππ0D = (196+14−15◦ , where the uncertainties include both statistical and systematic contributions. The analysis is re-performed in four bins of the phase-space of the D → K−π+π+π− to yield results that will allow for a more sensitive measurement of γ with this mode, to which the BESIII inputs will contribute an uncertainty of around 6◦.
We report new measurements of the branching fraction ℬ(𝐷+𝑠→ℓ+𝜈), where ℓ+ is either 𝜇+ or 𝜏+(→𝜋+¯𝜈𝜏), based on 6.32 fb−1 of electron-positron annihilation data collected by the BESIII experiment at six center-of-mass energy points between 4.178 and 4.226 GeV. Simultaneously floating the 𝐷+𝑠→𝜇+𝜈𝜇 and 𝐷+𝑠→𝜏+𝜈𝜏 components yields ℬ(𝐷+𝑠→𝜏+𝜈𝜏)=(5.21±0.25±0.17)×10−2, ℬ(𝐷+𝑠→𝜇+𝜈𝜇)=(5.35±0.13±0.16)×10−3, and the ratio of decay widths 𝑅=Γ(𝐷+𝑠→𝜏+𝜈𝜏)Γ(𝐷+𝑠→𝜇+𝜈𝜇)=9.73+0.61−0.58±0.36, where the first uncertainties are statistical and the second systematic. No evidence of 𝐶𝑃 asymmetry is observed in the decay rates 𝐷±𝑠→𝜇±𝜈𝜇 and 𝐷±𝑠→𝜏±𝜈𝜏: 𝐴𝐶𝑃(𝜇±𝜈)=(−1.2±2.5±1.0)% and 𝐴𝐶𝑃(𝜏±𝜈)=(+2.9±4.8±1.0)%. Constraining our measurement to the Standard Model expectation of lepton universality (𝑅=9.75), we find the more precise results ℬ(𝐷+𝑠→𝜏+𝜈𝜏)=(5.22±0.10±0.14)×10−2 and 𝐴𝐶𝑃(𝜏±𝜈𝜏)=(−0.1±1.9±1.0)%. Combining our results with inputs external to our analysis, we determine the 𝑐→¯𝑠 quark mixing matrix element, 𝐷+𝑠 decay constant, and ratio of the decay constants to be |𝑉𝑐𝑠|=0.973±0.009±0.014, 𝑓𝐷+𝑠=249.9±2.4±3.5 MeV, and 𝑓𝐷+𝑠/𝑓𝐷+=1.232±0.035, respectively.