Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Medizin (2)
- Biowissenschaften (1)
Gepaarte assoziative Magnetstimulation (PAS) kann im primären menschlichen Motorkortex (M1) sowohl langzeitpotenzierungs- (LTP) als auch langzeitdepressionsähnliche (LTD) Erregbarkeitsveränderungen hervorrufen. Dies kann durch die Untersuchung magnetisch evozierter Potentiale (MEP) erfasst werden. Dagegen ist wenig über die Auswirkungen von PAS auf willkürliche Aktivität des motorischen Kortex bekannt. Im ersten Experiment haben wir bewegungsabhängige kortikale Potentiale (MRCP) bei zehn gesunden Probanden im EEG registriert, um die willkürliche Aktivität im Motorkortex während der Vorbereitung zweier motorischer Aufgaben zu erfassen. Die Probanden mussten dabei entweder den Daumen abduzieren (Hauptmuskel: Musculus abductor pollicis brevis, APB) oder das Handgelenk strecken (Hauptmuskel: Musculus extensor carpi radialis, ECR). Die Amplituden der motorisch evozierten Potentiale im APB wurden dabei durch PASLTP gesteigert, durch PASLTD vermindert und blieben bei PAScontrol unverändert. Im Gegensatz dazu wurden sie im ECR durch keine PAS-Bedingungen verändert. PASLTP verminderte die Negativität der MRCP während des späten Bereitschaftspotentials (-500 bis 0 ms vor Bewegungsbeginn) nur in der APB-Aufgabe. Diese Veränderungen zeigten sich hauptsächlich über zentralen Elektroden kontralateral zur bewegten Hand. Dieser Effekt korrelierte negativ mit dem durch PASLTP induzierten MEP-Anstieg im APB. PASLTD und PAScontrol hatten dagegen keinen Einfluss auf die MRCP Amplituden. Unsere Ergebnisse deuten auf eine spezifische Wechselwirkung von PAS mit willkürlicher Aktivität im Motorkortex während der Vorbereitung motorischer Aufgaben hin. Dies könnte durch ein Zusammenspiel aus erhöhter Exzitabilität von M1 und einer unterbrochenen effektiven Konnektivität zwischen prämotorischen Arealen und M1 erklärt werden. Die Modulation des dorsolateralen prämotorischen Kortex (PMd) durch repetitive transkranielle Magnetstimulation (rTMS) verändert die kortikospinale Erregbarkeit in M1. Die Auswirkungen von PMd-rTMS auf vorbereitende Prozesse für willkürliche Bewegungsabläufe sind jedoch unklar. Contingent negative variation (CNV) repräsentiert im EEG kortikale Vorbereitungsprozesse äußerlich getriggerter Bewegungen während das Bereitschaftspotential (BP) Vorbereitungsprozesse intern getriggerter Bewegungen repräsentiert. Im zweiten Experiment wurden CNV und BP jeweils vor und nach PMd-rTMS untersucht. Das Experiment bestand aus drei CNV-Versuchsblöcken mit insgesamt 243 Durchgängen. Dabei mussten die Probanden auf visuelle Anweisung hin eine zwei-Item Finger-Bewegungssequenz durchführen. RTMS wurde sowohl mit 1 Hz als auch mit 5 Hz bei einer Intensität von 110% der aktiven motorischen Schwelle (AMT) unter individueller MR-Navigation appliziert. Die Erfassung des BP erfolgte während der Durchführung derselben motorischen Aufgaben, allerdings bekamen die Probanden keine Anweisungen. Die Durchschnittsamplituden der frühen und späten Komponente von CNV (CNV1:1500-500 ms vor dem Startsignal (S2); CNV: 500-0 ms vor S2) und der frühen und späten Komponente des BP (BP1: 1500-500 ms vor EMG Beginn; BP2: 500-0 ms vor EMG-Beginn) wurden quantitativ für 25 zentrale Elektrodenpositionen verglichen. CNV2 zeigte eine signifikante Bahnung über dem frontal-zentralen Bereich nach 1 Hz PMd-rTMS, blieb aber unverändert nach 5 Hz PMd-rTMS. CNV1, BP1 und BP2 blieben durch 1 Hz und 5 Hz PMd-rTMS unbeeinflusst. Diese Ergebnisse lassen vermuten, dass der dominante PMd eine wichtigere Rolle in der Vorbereitung extern getriggerter Bewegungen spielt, als dies bei intern getriggerten Bewegungen der Fall zu sein scheint. Die CNV2-Antwort könnte eine intensive Interaktion innerhalb des menschlichen motorischen Kontrollnetzwerks anzeigen, die möglicherweise auf kompensationsähnlichen Mechanismen beruht.
The cerebellum is crucially important for motor control and adaptation. Recent non-invasive brain stimulation studies have indicated the possibility to alter the excitability of the cerebellum and its projections to the contralateral motor cortex, with behavioral consequences on motor control and adaptation. Here we sought to induce bidirectional spike-timing dependent plasticity (STDP)-like modifications of motor cortex (M1) excitability by application of paired associative stimulation (PAS) in healthy subjects. Conditioning stimulation over the right lateral cerebellum (CB) preceded focal transcranial magnetic stimulation (TMS) of the left M1 hand area at an interstimulus interval of 2 ms (CB→M1 PAS(2 ms)), 6 ms (CB→M1 PAS(6 ms)) or 10 ms (CB→M1 PAS(10 ms)) or randomly alternating intervals of 2 and 10 ms (CB→M1 PAS(Control)). Effects of PAS on M1 excitability were assessed by the motor-evoked potential (MEP) amplitude, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and cerebellar-motor cortex inhibition (CBI) in the first dorsal interosseous muscle of the right hand. CB→M1 PAS(2 ms) resulted in MEP potentiation, CB→M1 PAS(6 ms) and CB→M1 PAS(10 ms) in MEP depression, and CB→M1 PAS(Control) in no change. The MEP changes lasted for 30-60 min after PAS. SICI and CBI decreased non-specifically after all PAS protocols, while ICF remained unaltered. The physiological mechanisms underlying these MEP changes are carefully discussed. Findings support the notion of bidirectional STDP-like plasticity in M1 mediated by associative stimulation of the cerebello-dentato-thalamo-cortical pathway and M1. Future studies may investigate the behavioral significance of this plasticity.
Augmenting LTP-like plasticity in human motor cortex by spaced paired associative stimulation
(2015)
Paired associative stimulation (PASLTP) of the human primary motor cortex (M1) can induce LTP-like plasticity by increasing corticospinal excitability beyond the stimulation period. Previous studies showed that two consecutive PASLTP protocols interact by homeostatic metaplasticity, but animal experiments provided evidence that LTP can be augmented by repeated stimulation protocols spaced by ~30min. Here we tested in twelve healthy selected PASLTP responders the possibility that LTP-like plasticity can be augmented in the human M1 by systematically varying the interval between two consecutive PASLTP protocols. The first PASLTP protocol (PAS1) induced strong LTP-like plasticity lasting for 30-60min. The effect of a second identical PASLTP protocol (PAS2) critically depended on the time between PAS1 and PAS2. At 10min, PAS2 prolonged the PAS1-induced LTP-like plasticity. At 30min, PAS2 augmented the LTP-like plasticity induced by PAS1, by increasing both magnitude and duration. At 60min and 180min, PAS2 had no effect on corticospinal excitability. The cumulative LTP-like plasticity after PAS1 and PAS2 at 30min exceeded significantly the effect of PAS1 alone, and the cumulative PAS1 and PAS2 effects at 60min and 180min. In summary, consecutive PASLTP protocols interact in human M1 in a time-dependent manner. If spaced by 30min, two consecutive PASLTP sessions can augment LTP-like plasticity in human M1. Findings may inspire further research on optimized therapeutic applications of non-invasive brain stimulation in neurological and psychiatric diseases.