Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Genetics (1)
- Genome-wide association studies (1)
- SARS-CoV-2 (1)
- Viral infection (1)
Institute
- Geowissenschaften (3)
- Biochemie und Chemie (1)
- Medizin (1)
Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralisation of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We take advantage of this natural experiment and investigate the reaction of calcification intensity, expressed as size-normalized weight (SNW), of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka) in a sediment core from the Levantine Basin. We observe a significant relationship between SNW and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at comparable conditions during the present day. These results indicate that the high-salinity environment of the glacial Mediterranean Sea prior to sapropel deposition induced a more intense calcification, whereas the freshwater injection to the surface waters associated with sapropel deposition inhibited calcification. The results are robust to changes in carbonate preservation and collectively imply that changes in normalized shell weight in planktonic Foraminifera should reflect mainly abiotic forcing.
Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralization of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We took advantage of this natural experiment and investigated the reaction of calcification intensity, expressed as mean area density (MAD), of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka) in a sediment core from the Levantine Basin. We observed a significant relationship between MAD and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface-dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at similar conditions during the present-day. These results indicate that the high-salinity environment of the glacial Mediterranean Sea prior to sapropel deposition induced a~more intense calcification, whereas the freshwater injection to the surface waters associated with sapropel deposition inhibited calcification. The results are robust to changes in carbonate preservation and collectively imply that changes in normalized shell weight in planktonic Foraminifera should reflect mainly abiotic forcing.
To reconstruct ocean circulation changes during specific periods of Earth history, benthic and planktic foraminifera were used as proxies in the different parts of this thesis. Both studied time periods, the Late Cretaceous and the early Pleistocene, are characterized by long-term climate cooling and major changes in ocean circulation. The first part of this thesis concentrated in the Late Cretaceous. During the Late Cretaceous long-term cooling phase, benthic foraminiferal δ18O values show a positive shift lasting about 1.5 Myr (71.5–70 Ma). This shift can be observed on a global scale and has become known as the Campanian-Maastrichtian Boundary Event (CMBE). It is proposed that this δ18O excursion is influenced either by changing intermediate- to deep-water circulation or by temporal build-up of Antarctic ice sheets. Benthic foraminiferal assemblage counts from a southern high-latitudinal site near Antarctica (ODP Site 690) are analyzed to test if the influence of the CMBE on the benthic species composition. One of the two discussed hypotheses for the causation of the δ18O transition is a change in intermediate- to deep-water circulation from low-latitude to high-latitude water masses. This change would result in cooler temperatures, higher oxygen concentration, and possibly lower organic-matter flux at the seafloor, causing a major benthic foraminiferal assemblage change. Another possible explanation of the δ18O transition of the CMBE is significant ice formation on Antarctica. However no major benthic foraminiferal assemblage change would be expected in this case. The benthic foraminiferal assemblage of Site 690 shows a separation of the studied succession into two parts with significantly different species composition. The older part (73.0–70.5 Ma) is dominated by species, which are typical for lower bottom water oxygen concentration and more common in low-latitude assemblages. Species dominating the younger part (70.0–68.0 Ma) are indicators for well-oxygenated bottom waters and more common in high-latitude assemblages. This change in the benthic foraminiferal assemblages is interpreted to represent a shift of low-latitude toward high-latitude dominated intermediateto deep-water sources. A change in oceanic circulation was therefore at least a major component of the CMBE. The Pacific Ocean contributed significantly to the climatic development during the Late Cretaceous cooling period. The contribution of ocean circulation changes in the Pacific Ocean to the Late Cretaceous climatic development in general and the CMBE and Mid-Maastrichtian Event (MME) in particular, however, is poorly understood. Previously measured high resolution planktic and benthic stable isotope data and a neodymium (Nd) isotope record from the Pacific ODP Site 1210 (Shatsky Rise, tropical Pacific Ocean) for the Campanian to Maastrichtian (69.5 to 72.5 Ma) are used to reconstruct changes in surface- and bottom water temperatures as well as changes in the source region of deep- to intermediate waters [see Appendix 4; Jung et al. 2013]. The results of the benthic foraminiferal δ18O and Nd isotope records in combination with Nd isotope records from other studies indicate changes in the intensity of intermediate- to deep ocean circulation in the tropical Pacific across the Campanian-Maastrichtian interval [see Appendix 4; Jung et al. 2013]. During the early Maastrichtian (72.5 to 69.5 Ma), a three-million-year-long period of cooler conditions and a simultaneous change towards less radiogenic Nd isotope signatures is interpreted to represent a period of increased admixture and northward flow of deep waters from the Southern Ocean (Southern Component Water, SCW). This change was probably caused by an intensified formation of deep waters in the Southern Ocean. This was reduced again during the MME (69.5 to 68.5 Ma). This early Maastrichtian cold interval is similar to the CMBEδ13C fall and succeeding δ13C rise towards the MME and is therefore also interpreted to represent tectonically forced, long-term changes in the global carbon cycle and thus a tectonic forcing of the early Maastrichtian climate cooling. Overall, the Campanian-Maastrichtian Nd and stable isotope records of Shatsky Rise indicate changes in ocean circulation that are paralleled by global warming and cooling periods. The fluctuating strength of SCW contribution in the tropical Pacific points towards an increased respectively weakened ocean circulation, which is probably related to the strength of deep-water formation in the Southern Ocean [see Appendix 4; Jung et al. 2013]. For this study, the analysis of benthic foraminiferal assemblages of Site 1210 is carried out for the same time interval (69.5 to 72.5 Ma) as Nd and stable isotopes to evaluate the influence of intermediate- to deep ocean circulation changes on the benthic foraminiferal community. The possible reaction of benthic foraminiferal assemblages is compared to the results of stable isotope and neodymium isotopes. The observed changes in species abundances only partly reflect the circulation changes reconstructed with Nd and stable oxygen istopes. For example, Stensioina spp., Aragonia spp. and Lenticulina spp., cold-water preferring species, start to be increasingly abundant at the beginning of enhanced influence of SCW. However, their abundance pattern does not follow the varying strength of the cold SCW influence at Shatsky Rise. Other species prefer lesser oxygen concentrations and warmer bottom water, e.g. Paralabamina spp. and Globorotalites spp. Paralabamina spp. has its highest relativ abundance at the beginning of the studied succession, where the influence of SCW is small. However, this taxa occurs throughout the record, even though the influence of SCW increases. Globorotalites spp. is even most abundance after the CMBE, where bottom waters are till cold and influenced by SCW. This leads to the conclusion that the varying strength of SCW in the tropical Pacific at Shatsky Rise through the studied interval is not facilitating a significant faunal turnover as has been observed at the South Atlantic Site 690 (Chapter 3). These results of the benthic foraminiferal assemblage analysis suggest a rather minor influence of the SCW on the major environmental factors that are generally influencing benthic foraminiferal communities (e.g., oxygen concentration, organic matter flux to the sea floor, bottom-water temperature). The second major part of this thesis focused on the late Pliocene-earliest Pleistocene. The late Pliocene is characterized by a long-term global cooling trend resulting in a major increase of Arctic ice sheets from around 3 Ma onwards, culminating in the Plio-Pleistocene intensification of the Northern Hemisphere glaciation. At around 2.7 Ma, large amplitude glacial-interglacial excursions (~1‰ δ18O in benthic foraminiferal calcite) in benthic oxygen isotopes can be observed. Marine isotope stage (MIS) 100 at around 2.55 Ma is the first glacial, when widespread ice rafted debris has been found in sediments in the North Atlantic Ocean. To gain a deeper understanding of the climatic evolution of the latest Pliocene-early Pleistocene, it is necessary to improve the reconstructions of North Atlantic paleohydrography, as the North Atlantic provides a key region for global climate. The consequences of the intensification of Northern Hemisphere on the early Pleistocene North Atlantic thermocline stratification and intermediate waters are still poorly understood. However, surface hydrography, the history of the thermocline and development of North Atlantic intermediate waters are well-studied for the Last Glacial Maximum (LGM). These well-known mechanisms responsible for the LGM in comparison with the present-day interglacial North Atlantic are used as an analogue for te early Pleistocene glacialinterglacials cycles. In this study, suborbitally resolved stable oxygen and carbon isotope and Mg/Ca records are measured from a deep-dwelling planktic foraminifera (Globorotaliacrassaformis) from Integrated Ocean Drilling Program Site U1313 (North Atlantic, 41°N) covering marine oxygen isotope stages MIS 103 to 95 (early Pleistocene, 2.6 to 2.4 Ma). The results are interpreted to represent a change in intermediate-water masses on glacialinterglacial timescales. During glacials geochemical records in G. crassaformis (~500–1000 m) bear the imprint of Glacial North Atlantic Intermediate Water (GNAIW), while during interglacials this species reflects the signature of the influence of Mediterranean Outflow Water (MOW) in combination with the subtropical gyre. The comparison of this data with the published records from G. ruber from the same samples facilitates the reconstruction of glacial-interglacial stratification changes of the upper water column at Site U1313. The results show that larger gradients of temperature, salinity and δ13C prevailed during glacials, suggesting a stronger stratification of the upper water column. This can be seen to indicate glacial-interglacial changes in ntermediate water masses in the North Atlantic similar to those reconstructed for the latest Pleistocene. As an additional proxy, the clumped isotope paleothermometer is applied for the Late Cretaceous study as well as for the early Pleistocene. This proxy is commonly assumed to be independent of other factors than temperature. Clumped isotopes are measured for the Late Cretaceous Site 690 on the planktic foraminiferal species Archaeoglobigerina australis and compared to already existing stable oxygen isotopes of this species. This is assumed to enable the reconstruction of paleotemperature independent of ice volume and therefore contribute to the long-lasting discussion whether there was a temporal ice build-up on Antarctic during the Campanian-Maastrichtian cooling period. For the early Pleistocene, the planktic foraminiferal species G. crassaformis is used from Site U1313 from MIS 99 (interglacial) and MIS 98 (glacial). This provides the opportunity to separate ice volume, salinity and temperature effects on the measured δ18O record of G. crassaformis. The results of the clumped isotope measurements reveal comparatively large standard errors. For the Late Cretaceous the standard error of the clumped isotope measurements proved too large to allow any conclusions on the temperature component on the δ18O record of A. australis. For the early Pleistocene, the temperature difference is also too small to be reconstructed with the standard error of the clumped isotope measurements in this study. Measuring many replicates of one sample would minimize the standard error considerably. However, the amount necessary to measure replicates cannot be gained for either time period, as almost all foraminifera were picked from the respective samples. It is concluded that the respective questions may be solved with a different method of clumped isotope analysis requiring less sample material. This method is, for example, available at the ETH Zurich.
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.