Refine
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Kristallzüchtung (1)
- Kryoelektronenmikroskopie (1)
- Kryokonservierung (1)
- Membran (1)
- Membranproteine (1)
- Proteine (1)
- Proteinsekretion (1)
- Proteintransport (1)
- SecYEG (1)
- YidC (1)
Institute
Transport of proteins into or across cellular membranes is mediated by the conserved and ubiquitous Sec-machinery. The Sec-homologue in the inner membrane of Escherichia coli is SecYEG. Sec-mediated insertion of numerous membrane proteins is aided by YidC, another protein integral to the inner membrane of Escherichia coli. YidC fulfils in addition the integration of a variety of membrane proteins Sec-independently. It belongs to a conserved but structurally uncharacterised family of proteins important for membrane protein biogenesis and comprises homologues in mitochondria and chloroplasts. By modification of a former crystallisation protocol two-dimensional crystals of SecYEG were grown in presence of the signal sequence peptide of LamB. Recording of structural data by electron cryo-microscopy and calculation of a difference structure comparing a former SecYEG projection structure with the one of SecYEG crystallised in presence of the substrate revealed several new and vacant densities. These hint to signal peptide binding close to the translocation pore and to significant rearrangements in proximity to the lateral exit site for transmembrane domains in SecYEG. The difference structure suggests that dimeric SecYEG is an asymmetric molecule consisting of one active and one inactive SecYEG monomer. Detergent removal from a mixture of purified YidC and lipids produced two-dimensional crystals that were highly dependent on the ionic strength and lipid composition for their growth. Electron cryo-microscopy on the frozen-hydrated crystals and image processing visualised structural details at about 10 Å resolution. Averaging two alternative projection structures in p2 and p121_a symmetry, respectively, yielded essentially the same features. Four YidC monomers form one unit cell (dimensions 82 x 71 Å, included angle 85 ° and 90 °, respectively) and seem to be arranged as two sets of dimers integrated in an anti-parallel fashion into the membrane. An area of low density in the centre of each YidC monomer resembles possibly a constriction of the membrane, which could have particular relevance for the integration of substrate proteins into the lipid bilayer.