Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- ACT-777991 (1)
- CXCR3 antagonism (1)
- anti-CD3 antibody (1)
- combination therapy (1)
- plasma C-peptide (1)
- type 1 diabetes (1)
Institute
Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection
(2008)
Autoimmune liver diseases, such as autoimmune hepatitis (AIH) and primary biliary cirrhosis, often have severe consequences for the patient. Because of a lack of appropriate animal models, not much is known about their potential viral etiology. Infection by liver-tropic viruses is one possibility for the breakdown of self-tolerance. Therefore, we infected mice with adenovirus Ad5 expressing human cytochrome P450 2D6 (Ad-2D6). Ad-2D6–infected mice developed persistent autoimmune liver disease, apparent by cellular infiltration, hepatic fibrosis, “fused” liver lobules, and necrosis. Similar to type 2 AIH patients, Ad-2D6–infected mice generated type 1 liver kidney microsomal–like antibodies recognizing the immunodominant epitope WDPAQPPRD of cytochrome P450 2D6 (CYP2D6). Interestingly, Ad-2D6–infected wild-type FVB/N mice displayed exacerbated liver damage when compared with transgenic mice expressing the identical human CYP2D6 protein in the liver, indicating the presence of a stronger immunological tolerance in CYP2D6 mice. We demonstrate for the first time that infection with a virus expressing a natural human autoantigen breaks tolerance, resulting in a chronic form of severe, autoimmune liver damage. Our novel model system should be instrumental for studying mechanisms involved in the initiation, propagation, and precipitation of virus-induced autoimmune liver diseases.
Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing beta-cells in the pancreas. Recruitment of inflammatory cells is prerequisite to beta-cell-injury. The junctional adhesion molecule (JAM) family proteins JAM-B and JAM–C are involved in polarized leukocyte transendothelial migration and are expressed by vascular endothelial cells of peripheral tissue and high endothelial venules in lympoid organs. Blocking of JAM-C efficiently attenuated cerulean-induced pancreatitis, rheumatoid arthritis or inflammation induced by ischemia and reperfusion in mice. In order to investigate the influence of JAM-C on trafficking and transmigration of antigen-specific, autoaggressive T-cells, we used transgenic mice that express a protein of the lymphocytic choriomeningitis virus (LCMV) as a target autoantigen in the β-cells of the islets of Langerhans under the rat insulin promoter (RIP). Such RIP-LCMV mice turn diabetic after infection with LCMV. We found that upon LCMV-infection JAM-C protein was upregulated around the islets in RIP-LCMV mice. JAM-C expression correlated with islet infiltration and functional beta-cell impairment. Blockade with a neutralizing anti-JAM-C antibody reduced the T1D incidence. However, JAM-C overexpression on endothelial cells did not accelerate diabetes in the RIP-LCMV model. In summary, our data suggest that JAM-C might be involved in the final steps of trafficking and transmigration of antigen-specific autoaggressive T-cells to the islets of Langerhans.
Treatment of patients with recent-onset type 1 diabetes with an anti-CD3 antibody leads to the transient stabilization of C-peptide levels in responder patients. Partial efficacy may be explained by the entry of islet-reactive T-cells spared by and/or regenerated after the anti-CD3 therapy. The CXCR3/CXCL10 axis has been proposed as a key player in the infiltration of autoreactive T cells into the pancreatic islets followed by the destruction of β cells. Combining the blockade of this axis using ACT-777991, a novel small-molecule CXCR3 antagonist, with anti-CD3 treatment may prevent further infiltration and β-cell damage and thus, preserve insulin production. The effect of anti-CD3 treatment on circulating T-cell subsets, including CXCR3 expression, in mice was evaluated by flow cytometry. Anti-CD3/ACT-777991 combination treatment was assessed in the virally induced RIP-LCMV-GP and NOD diabetes mouse models. Treatments started at disease onset. The effects on remission rate, blood glucose concentrations, insulitis, and plasma C-peptide were evaluated for the combination treatment and the respective monotherapies. Anti-CD3 treatment induced transient lymphopenia but spared circulating CXCR3+ T cells. Combination therapy in both mouse models synergistically and persistently reduced blood glucose concentrations, resulting in increased disease remission rates compared to each monotherapy. At the study end, mice in disease remission demonstrated reduced insulitis and detectable plasma C-peptide levels. When treatments were initiated in non-severely hyperglycemic NOD mice at diabetes onset, the combination treatment led to persistent disease remission in all mice. These results provide preclinical validation and rationale to investigate the combination of ACT-777991 with anti-CD3 for the treatment of patients with recent-onset diabetes.