Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- inflammation (4)
- AICAR (1)
- AMP-activated kinase (1)
- AMPK (1)
- HDAC (1)
- IKKε (1)
- MAP kinase (1)
- NF-кB (1)
- Nociception (1)
- TBK1 (1)
Institute
Inhibitor-kappaB kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) are non-canonical IκB kinases, both described as contributors to tumor growth and metastasis in different cancer types. Several hints indicate that they are also involved in the pathogenesis of melanoma; however, the impact of their inhibition as a potential therapeutic measure in this “difficult-to-treat” cancer type has not been investigated so far. We assessed IKKε and TBK1 expression in human malignant melanoma cells, primary tumors and the metastasis of melanoma patients. Both kinases were expressed in the primary tumor and in metastasis and showed a significant overexpression in tumor cells in comparison to melanocytes. The pharmacological inhibition of IKKε/TBK1 by the approved drug amlexanox reduced cell proliferation, migration and invasion. Amlexanox did not affect the cell cycle progression nor apoptosis induction but significantly suppressed autophagy in melanoma cells. The analysis of potential functional downstream targets revealed that NF-кB and ERK pathways might be involved in kinase-mediated effects. In an in vivo xenograft model in nude mice, amlexanox treatment significantly reduced tumor growth. In conclusion, amlexanox was able to suppress tumor progression potentially by the inhibition of autophagy as well as NF-кB and MAP kinase pathways and might therefore constitute a promising candidate for melanoma therapy.
Class I and II histone deacetylases (HDAC) are considered important regulators of immunity and inflammation. Modulation of HDAC expression and activity is associated with altered inflammatory responses but reports are controversial and the specific impact of single HDACs is not clear. We examined class I and II HDACs in TLR-4 signaling pathways in murine macrophages with a focus on IκB kinase epsilon (IKKε) which has not been investigated in this context before. Therefore, we applied the pan-HDAC inhibitors (HDACi) trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA) as well as HDAC-specific siRNA. Administration of HDACi reduced HDAC activity and decreased expression of IKKε although its acetylation was increased. Other pro-inflammatory genes (IL-1β, iNOS, TNFα) also decreased while COX-2 expression increased. HDAC 2, 3 and 4, respectively, might be involved in IKKε and iNOS downregulation with potential participation of NF-κB transcription factor inhibition. Suppression of HDAC 1–3, activation of NF-κB and RNA stabilization mechanisms might contribute to increased COX-2 expression. In conclusion, our results indicate that TSA and SAHA exert a number of histone- and HDAC-independent functions. Furthermore, the data show that different HDAC enzymes fulfill different functions in macrophages and might lead to both pro- and anti-inflammatory effects which have to be considered in therapeutic approaches.
Background: Caloric restriction is associated with broad therapeutic potential in various diseases and an increase in health and life span. In this study, we assessed the impact of caloric restriction on acute and inflammatory nociception in mice, which were either fed ad libitum or subjected to caloric restriction with 80% of the daily average for two weeks.
Results: The behavioral tests revealed that inflammatory nociception in the formalin test and in zymosan-induced mechanical hypersensitivity were significantly decreased when mice underwent caloric restriction. As potential mediators of the diet-induced antinociception, we assessed genes typically induced by inflammatory stimuli, AMP-activated kinase, and the endocannabinoid system which have all already been associated with nociceptive responses. Zymosan-induced inflammatory markers such as COX-2, TNFα, IL-1β, and c-fos in the spinal cord were not altered by caloric restriction. In contrast, AMPKα2 knock-out mice showed significant differences in comparison to C57BL/6 mice and their respective wild type littermates by missing the antinociceptive effects after caloric restriction. Endocannabinoid levels of anandamide and 2-arachidonyl glyceroldetermined in serum by LC-MS/MS were not affected by either caloric restriction alone or in combination with zymosan treatment. However, cannabinoid receptor type 1 expression in the spinal cord, which was not altered by caloric restriction in control mice, was significantly increased after caloric restriction in zymosan-induced paw inflammation. Since increased cannabinoid receptor type 1 signaling might influence AMP-activated kinase activity, we analyzed effects of anandamide on AMP-activated kinase in cell culture and observed a significant activation of AMP-activated kinase. Thus, endocannabionoid-induced AMP-activated kinase activation might be involved in antinociceptive effects after caloric restriction.
Conclusion: Our data suggest that caloric restriction has an impact on inflammatory nociception which might involve AMP-activated kinase activation and an increased activity of the endogenous endocannabinoid system by caloric restriction-induced cannabinoid receptor type 1 upregulation.
The stimulation of the AMP-activated kinase (AMPK) by 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) has been associated with antihyperalgesia and the inhibition of nociceptive signaling in the spinal cord in models of paw inflammation. The attenuated nociception comes along with a strongly reduced paw edema, indicating that peripheral antiinflammatory mechanisms contribute to antinociception. In this study, we investigated the impact of AICAR on the immune cell composition in inflamed paws, as well as the regulation of inflammatory and resolving markers in macrophages. By using fluorescence-activated cell sorting (FACS) analysis and immunofluorescence, we found a significantly increased fraction of proresolving M2 macrophages and anti-inflammatory interleukin (IL)-10 in inflamed tissue, while M1 macrophages and proinflammatory cytokines such as IL-1 were decreased by AICAR in wild type mice. In AMPKα2 knock-out mice, the M2 polarization of macrophages in the paw was missing. The results were supported by experiments in primary macrophage cultures which also showed a shift to a proresolving phenotype with decreased levels of proinflammatory mediators and increased levels of antiinflammatory mediators. However, in the cell cultures, we did not observe differences between the AMPKα2+/+ and −/− cells, thus indicating that the AICAR-induced effects are at least partially AMPK-independent. In summary, our results indicate that AICAR has potent antiinflammatory and proresolving properties in inflammation which are contributing to a reduction of inflammatory edema and antinociception.
Diese Arbeit behandelt die Rolle der Proteinkinasen IKKe und TBK1 in der Progression von humanen malignene Melanomen und die Rolle von alpha-Synuclein in der Schmerzwahrnehmung von Mäusen.
(1) AlphαSynuclein (αSyn) is a synaptic protein which is expressed in the nervous system and has been linked to neurodegenerative diseases, in particular Parkinson’s disease (PD). Symptoms of PD are mainly due to overexpression and aggregation of αSyn and include pain. However, the interconnection of αSyn and pain has not been clarified so far. (2) We investigated the potential effects of a αSyn knock-out on the nociceptive behaviour in mouse models of acute, inflammatory and neuropathic pain. Furthermore, we assessed the impact of αSyn deletion on pain-related cellular and molecular mechanisms in the spinal cord in these models. (3) Our results showed a reduction of acute cold nociception in αSyn knock-out mice while responses to acute heat and mechanical noxious stimulation were similar in wild type and knock-out mice. Inflammatory nociception was not affected by αSyn knock-out which is also mirrored by unaltered inflammatory gene expression. In contrast, in the SNI model of neuropathic pain, αSyn knock-out mice showed decreased mechanical allodynia as compared to wild type mice. This effect was associated with reduced proinflammatory mechanisms and suppressed activation of MAP kinase signalling in the spinal cord while endogenous antinociceptive mechanisms are not inhibited. (4) Our data indicate that αSyn plays a role in neuropathy and its inhibition might be useful to ameliorate pain symptoms after nerve injury.