Refine
Document Type
- Article (10)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- MCAK (3)
- ovarian cancer (3)
- Cancer (2)
- Apoptosis (1)
- CD95/Fas receptor (1)
- CDK1 Kinase (1)
- Cell division (1)
- Cell signalling (1)
- Colon cancer (1)
- Depolymerisierung (1)
Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis
(2014)
Proper bi-orientation of chromosomes is critical for the accurate segregation of chromosomes in mitosis. A key regulator of this process is MCAK, the mitotic centromere-associated kinesin. During mitosis the activity and localization of MCAK are regulated by mitotic key kinases including Plk1 and Aurora B. We show here that S621 in the MCAK’s C-terminal domain is the major phosphorylation site for Plk1. This phosphorylation regulates MCAK’s stability and facilitates its recognition by the ubiquitin/proteasome dependent APC/CCdc20 pathway leading to its D-box dependent degradation in mitosis. While phosphorylation of S621 does not directly affect its microtubule depolymerising activity, loss of Plk1 phosphorylation on S621 indirectly enhances its depolymerization activity in vivo by stabilizing MCAK, leading to an increased level of protein. Interfering with phosphorylation at S621 causes spindle formation defects and chromosome misalignments. Therefore, this study suggests a new mechanism by which Plk1 regulates MCAK: by regulating its degradation and hence controlling its turnover in mitosis.
The inability to faithfully segregate chromosomes in mitosis results in chromosome instability, a hallmark of solid tumors. Disruption of microtubule dynamics contributes highly to mitotic chromosome instability. The kinesin-13 family is critical in the regulation of microtubule dynamics and the best characterized member of the family, the mitotic centromere-associated kinesin (MCAK), has recently been attracting enormous attention. MCAK regulates microtubule dynamics as a potent depolymerizer of microtubules by removing tubulin subunits from the polymer end. This depolymerizing activity plays pivotal roles in spindle formation, in correcting erroneous attachments of microtubule-kinetochore and in chromosome movement. Thus, the accurate regulation of MCAK is important for ensuring the faithful segregation of chromosomes in mitosis and for safeguarding chromosome stability. In this review we summarize recent data concerning the regulation of MCAK by mitotic kinases, Aurora A/B, Polo-like kinase 1 and cyclin-dependent kinase 1. We propose a molecular model of the regulation of MCAK by these mitotic kinases and relevant phosphatases throughout mitosis. An ever-increasing quantity of data indicates that MCAK is aberrantly regulated in cancer cells. This deregulation is linked to increased malignance, invasiveness, metastasis and drug resistance, most probably due to increased chromosomal instability and remodeling of the microtubule cytoskeleton in cancer cells. Most interestingly, recent observations suggest that MCAK could be a novel molecular target for cancer therapy, as a new cancer antigen or as a mitotic regulator. This collection of new data indicates that MCAK could be a new star in the cancer research sky due to its critical roles in the control of genome stability and the cytoskeleton. Further investigations are required to dissect the fine details of the regulation of MCAK throughout mitosis and its involvements in oncogenesis.
The spindle assembly checkpoint (SAC) acts as a molecular safeguard in ensuring faithful chromosome transmission during mitosis, which is regulated by a complex interplay between phosphatases and kinases including PLK1. Adenomatous polyposis coli (APC) germline mutations cause aneuploidy and are responsible for familial adenomatous polyposis (FAP). Here we study the role of PLK1 in colon cancer cells with chromosomal instability promoted by APC truncation (APC-ΔC). The expression of APC-ΔC in colon cells reduces the accumulation of mitotic cells upon PLK1 inhibition, accelerates mitotic exit and increases the survival of cells with enhanced chromosomal abnormalities. The inhibition of PLK1 in mitotic, APC-∆C-expressing cells reduces the kinetochore levels of Aurora B and hampers the recruitment of SAC component suggesting a compromised mitotic checkpoint. Furthermore, Plk1 inhibition (RNAi, pharmacological compounds) promotes the development of adenomatous polyps in two independent ApcMin/+ mouse models. High PLK1 expression increases the survival of colon cancer patients expressing a truncated APC significantly.
Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8
(2016)
Upon interaction of the CD95 receptor with its ligand, sequential association of the adaptor molecule FADD (MORT1), pro-forms of caspases-8/10, and the caspase-8/10 regulator c-FLIP leads to the formation of a death-inducing signaling complex. Here, we identify polo-like kinase (Plk) 3 as a new interaction partner of the death receptor CD95. The enzymatic activity of Plk3 increases following interaction of the CD95 receptor with its ligand. Knockout (KO) or knockdown of caspase-8, CD95 or FADD prevents activation of Plk3 upon CD95 stimulation, suggesting a requirement of a functional DISC for Plk3 activation. Furthermore, we identify caspase-8 as a new substrate for Plk3. Phosphorylation occurs on T273 and results in stimulation of caspase-8 proapoptotic function. Stimulation of CD95 in cells expressing a non-phosphorylatable caspase-8-T273A mutant in a rescue experiment or in Plk3-KO cells generated by CRISPR/Cas9 reduces the processing of caspase-8 prominently. Low T273 phosphorylation correlates significantly with low Plk3 expression in a cohort of 95 anal tumor patients. Our data suggest a novel mechanism of kinase activation within the Plk family and propose a new model for the stimulation of the extrinsic death pathway in tumors with high Plk3 expression.
The taxanes are effective microtubule-stabilizing chemotherapy drugs that inhibit mitosis, induce apoptosis, and produce regression in a fraction of cancers that arise at many sites including the ovary. Novel therapeutic targets that augment taxane effects are needed to improve clinical chemotherapy response in CCNE1-amplified high grade serous ovarian cancer (HGSOC) cells. In this study, we conducted an siRNA-based kinome screen to identify modulators of mitotic progression in CCNE1-amplified HGSOC cells that may influence clinical paclitaxel response. PLK1 is overexpressed in many types of cancer, which correlates with poor prognosis. Here, we identified a novel synthetic lethal interaction of the clinical PLK1 inhibitor BI6727 and the microtubule-targeting drug paclitaxel in HGSOC cell lines with CCNE1-amplification and elucidated the underlying molecular mechanisms of this synergism. BI6727 synergistically induces apoptosis together with paclitaxel in different cell lines including a patient-derived primary ovarian cancer culture. Moreover, the inhibition of PLK1 reduced the paclitaxel-induced neurotoxicity in a neurite outgrowth assay. Mechanistically, the combinatorial treatment with BI6727/paclitaxel triggers mitotic arrest, which initiates mitochondrial apoptosis by inactivation of anti-apoptotic BCL-2 family proteins, followed by significant loss of the mitochondrial membrane potential and activation of caspase-dependent effector pathways. This conclusion is supported by data showing that BI6727/paclitaxel-co-treatment stabilizes FBW7, a component of SCF-type ubiquitin ligases that bind and regulate key modulators of cell division and growth including MCL-1 and Cyclin E. This identification of a novel synthetic lethality of PLK1 inhibitors and a microtubule-stabilizing drug has important implications for developing PLK1 inhibitor-based combination treatments in CCNE1-amplified HGSOC cells.
Paclitaxel is a frontline drug for the treatment of epithelial ovarian cancer (EOC). However, following paclitaxel-platinum based chemotherapy, tumor recurrence occurs in most ovarian cancer patients. Chromosomal instability (CIN) is a hallmark of cancer and represents genetic variation fueling tumor adaptation to cytotoxic effects of anticancer drugs. In this study, our Kaplan-Meier analysis including 263 ovarian cancer patients (stages I/II) revealed that high Polo-like kinase (PLK) 1 expression correlates with bad prognosis. To evaluate the role of PLK1 as potential cancer target within a combinatorial trial, we induced strong mitotic arrest in ovarian cancer cell lines by synergistically co-targeting microtubules (paclitaxel) and PLK1 (BI6727) followed by pharmaceutical inhibition of the Anaphase-Promoting Complex (APC/C) using proTAME. In short- and long-term experiments, this triple treatment strongly activated apoptosis in cell lines and primary ovarian cells derived from cancer patients. Mechanistically, BI6727/paclitaxel/proTAME stabilize Cyclin B1 and trigger mitotic arrest, which initiates mitochondrial apoptosis by inactivation of antiapoptotic BCL-2 family proteins, followed by activation of caspase-dependent effector pathways. This triple treatment prevented endoreduplication and reduced CIN, two mechanisms that are associated with aggressive tumors and the acquisition of drug resistance. This “two-punch strategy” (strong mitotic arrest followed by blocking mitotic exit) has important implications for developing paclitaxel-based combinatorial treatments in ovarian cancer.
High attrition rates of novel anti-cancer drugs highlight the need for improved models to predict toxicity. Although polo-like kinase 1 (Plk1) inhibitors are attractive candidates for drug development, the role of Plk1 in primary cells remains widely unexplored. Therefore, we evaluated the utility of an RNA interference-based model to assess responses to an inducible knockdown (iKD) of Plk1 in adult mice. Here we show that Plk1 silencing can be achieved in several organs, although adverse events are rare. We compared responses in Plk1-iKD mice with those in primary cells kept under controlled culture conditions. In contrast to the addiction of many cancer cell lines to the non-oncogene Plk1, the primary cells' proliferation, spindle assembly and apoptosis exhibit only a low dependency on Plk1. Responses to Plk1-depletion, both in cultured primary cells and in our iKD-mouse model, correspond well and thus provide the basis for using validated iKD mice in predicting responses to therapeutic interventions.
Polo-like kinase 1 (PLK1) is a crucial regulator of cell cycle progression. It is established that the activation of PLK1 depends on the coordinated action of Aurora-A and Bora. Nevertheless, very little is known about the spatiotemporal regulation of PLK1 during G2, specifically, the mechanisms that keep cytoplasmic PLK1 inactive until shortly before mitosis onset. Here, we describe PLK1 dimerization as a new mechanism that controls PLK1 activation. During the early G2 phase, Bora supports transient PLK1 dimerization, thus fine-tuning the timely regulated activation of PLK1 and modulating its nuclear entry. At late G2, the phosphorylation of T210 by Aurora-A triggers dimer dissociation and generates active PLK1 monomers that support entry into mitosis. Interfering with this critical PLK1 dimer/monomer switch prevents the association of PLK1 with importins, limiting its nuclear shuttling, and causes nuclear PLK1 mislocalization during the G2-M transition. Our results suggest a novel conformational space for the design of a new generation of PLK1 inhibitors.
The activity of the Salt inducible kinase 2 (SIK2), a member of the AMP-activated protein kinase (AMPK)-related kinase family, has been linked to several biological processes that maintain cellular and energetic homeostasis. SIK2 is overexpressed in several cancers, including ovarian cancer, where it promotes the proliferation of metastases. Furthermore, as a centrosome kinase, SIK2 has been shown to regulate the G2/M transition, and its depletion sensitizes ovarian cancer to paclitaxel-based chemotherapy. Here, we report the consequences of SIK2 inhibition on mitosis and synergies with paclitaxel in ovarian cancer using a novel and selective inhibitor, MRIA9. We show that MRIA9-induced inhibition of SIK2 blocks the centrosome disjunction, impairs the centrosome alignment, and causes spindle mispositioning during mitosis. Furthermore, the inhibition of SIK2 using MRIA9 increases chromosomal instability, revealing the role of SIK2 in maintaining genomic stability. Finally, MRIA9 treatment enhances the sensitivity to paclitaxel in 3D-spheroids derived from ovarian cancer cell lines and ovarian cancer patients. Our study suggests selective targeting of SIK2 in ovarian cancer as a therapeutic strategy for overcoming paclitaxel resistance.
Die wichtigste Aufgabe der mitotischen Spindel ist die genaue Segregation der duplizierten Chromosomen in der Mitose. Diese dynamische Struktur wird von sich teilenden Zellen gebildet, um die Bewegung der Chromosomen, das Markenzeichen der Mitose, zu dirigieren. Trotz aller Unterschiede in Form und Größe der Spindeln unterschiedlicher Zelltypen, haben alle eukaryontischen Spindeln fundamentale strukturelle Eigenschaften gemeinsam. Eine der wichtigsten Eigenschaften ist die bipolare Symmetrie. Innerhalb der Spindel sind unterschiedliche Klassen der Mikrotubuli vorhanden, die durch ihre Organisation und durch ihre dynamischen Eigenschaften unterteilt sind. Alle Klassen der Mikrotubuli zeigen dynamische Instabilität. Dennoch weisen die Kinetochor-Mikrotubuli und die Spindel-Mikrotubuli zusätzlich ein anderes Verhalten auf, das als polwärts gerichteter Mikrotubuli-Flux ("Poleward Microtubule Flux") bezeichnet wird. Dabei werden die Tubulin-Untereinheiten stetig an den Plus-Enden der Mikrotubuli eingefügt und dann zu den Minus-Enden getragen, wo sie abgebaut werden. Dieser polwärts gerichtete Mikrotubuli-Flux ist für die Segregation der Chromosomen von großer Bedeutung. Mehrere regulatorische Proteine der Mikrotubuli, einschließlich der destabilisierenden und der depolymerisierenden Proteine, steuern die Dynamik dieser Mikrotubuli, um eine fehlerfreie Bildung der Spindel und eine korrekte Segregation der Chromosomen gewährleisten zu können. Die Kinesin-13 Familie der Depolymerasen gehört zu den prominentesten Modulatoren der Dynamik der Mikrotubuli. Das am Besten charakterisierte und intensiv studierte Mitglied dieser Familie ist das Protein KIF2C/MCAK. Aufgrund der unterschiedlichen Lokalisationen von MCAK während der Mitose, an den Spindelpolen, an den Chromosomen-Armen, an den Centromeren/Kinetochoren, kann MCAK eine Reihe an wichtigen Funktionen erzielen. Allerdings bleibt die Korrektur von Kinetochor-Mikrotubuli Fehlverknüpfungen die wichtigste Aufgabe von MCAK während der Mitose. Diese wesentliche Funktion steht unter der Kontrolle von Aurora B. In dieser Arbeit konnte gezeigt werden, dass MCAK während der Mitose auch von einem wichtigen Komplex, dem Cyclin B1/CDK1 Komplex, reguliert wird. In der Tat steuert die Kinase CDK1 sowohl die Lokalisation als auch die katalytische Aktivität von MCAK. Mit Hilfe einer systematischen Reihe an Experimenten konnte nachgewiesen werden, dass MCAK sowohl in vitro als auch in vivo von CDK1 phosphoryliert wird. CDK1 phosphoryliert den katalytischen Bereich von MCAK genau am Threonin 537 und führt zu einer deutlichen Abnahme der Depolymerisierungsaktivität von MCAK in vitro und in humanen Zellen. Diese Inhibition erfolgt wahrscheinlich durch eine Reduzierung der Affinität von MCAK zu den Mikrotubuli-Enden. Die Expression der Phosphostatus-vortäuschenden Mutante T537E in HeLa-Zellen verursachte eine fehlerhafte Verteilung der Chromosomen in der Mitose. Die Chromosomen waren in Anwesenheit der T537E Mutante nicht mehr in der Lage, sich auf der Metaphaseplatte anzuordnen. Darüber hinaus führte die Expression von T537E zu einer signifikanten Reduzierung des centromerischen Abstandes, was auf eine Anhäufung von Kinetochor-Mikrotubuli Fehlverknüpfungen hindeutet. Ferner zeigt die Expression der nichtphosphorylierbaren Mutante T537A in den HeLa-Zellen eine verstärkte Lokalisation an den Spindelpolen, was zum Auftreten von erheblichen Spindel-Aberrationen führte. Basierend auf den Daten der vorliegenden Arbeit wurde ein Modell entwickelt, in dem die Phosphorylierung von MCAK durch CDK1 früh in der Mitose stattfinden muss, um einerseits MCAK zu inaktivieren und andererseits diese Depolymerase aus den Spindelpolen zu verdrängen. Beide Ereignisse sind für den Aufbau einer bipolaren Spindel unentbehrlich. Zu späteren Zeitpunkten der Mitose muss das Threonin 537 dephosphoryliert werden, um eine Reaktivierung von MCAK an den Centrosomen/Kinetochoren zu ermöglichen. Dies wird die Korrektur-Funktion für Kinetochor-Mikrotubuli Fehlverknüpfungen von MCAK wiederherstellen, was eine korrekte Anordnung der Chromosomen auf der Metaphaseplatte fördert.