Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Atherosclerosis (1)
- Gene expression (1)
- Lineage tracing (1)
- Macrophage Transdifferentiation (1)
- Smooth muscle cell (1)
G-Protein-gekoppelte Rezeptoren (GPCR) sind im Immunsystem essentiell für die Verarbeitung von Signalen, die von Chemokinen, Lipiden und anderen Botenstoffen ausgehen. Ihre Existenz gewährleistet, dass Leukozyten sowohl unter physiologischen als auch unter pathophysiologischen Umständen ihren Funktionen als Immunzellen nachkommen können. Grundlegend wichtig für das angeborene Immunsystem sind die GPCR, die die Weiterleitung ihrer Signale über G-Proteine vom Typ Gi vermitteln. Die Migration, Adhäsion und Differenzierung von Leukozyten wird jedoch auch maßgeblich durch G12/13-gekoppelte Rezeptoren reguliert, wobei die kleine GTPase RhoA als Effektormolekül eine wichtige Rolle spielt. Die Bedeutung der G12/13-gekoppelten Signaltransduktion in Makrophagen ist allerdings weitgehend unverstanden. Mit Hilfe einer Mauslinie, in der speziell und ausschließlich in myeloiden Zellen die beiden G-Protein-Untereinheiten Gα12 und Gα13 durch ein konstitutiv aktives Cre-Rekombinase-System inaktiviert wurden (Lys-Gα12/Gα13-KO), sollte nun die Funktion und der genaue Mechanismus des G12/13-gekoppelten Signalweges in Monozyten und Makrophagen aufgeklärt werden und somit neue Erkenntnisse zur Rolle der GPCR im Immunsystem gewonnen werden.
Eine erste Untersuchung der peripheren Immunzellpopulationen des Lys-Gα12/Gα13-KO ergab, dass residente Gewebemakrophagen, im Speziellen die des Peritoneums, in ihrer Anzahl erhöht sind. In einer vertieften Analyse der residenten peritonealen Makrophagen (rpMP) konnte gezeigt werden, dass der Verlust von Gα12/13 zu Veränderung im Zytoskelett der Makrophagen führt. Die Zellen entwickeln einen Phänotyp mit besonders langen und verzweigten Filopodien und zeigen Ein-schränkungen in ihrer basalen Beweglichkeit.
Über diesen morphologischen Befund hinaus, konnte in einer Studie zur Gen-expression in diesen Zellen festgestellt werden, dass Gα12/13-defiziente Makrophagen verstärkt proinflammatorische Gene wie Nos2, die Cyclooxygenase 2 aber auch verschiedene Chemokine wie Cxcl10 oder Cytokine wie Il-6 oder Tnfα exprimieren. Ein ähnlicher Phänotyp in Bezug auf Morphologie und Genexpression wurde bei der Untersuchung von Makrophagen, die aus Knochenmark des Lys-Gα12/Gα13-KO generiert wurden, beobachtet.
Als vermutlich verantwortlicher G12/13-gekoppelter Rezeptor konnte der S1P-Rezeptor-subtyp 2 (S1P2) identifiziert werden. Mit Hilfe von Inhibitoren für die G12/13-gekoppelte Signaltransduktionskaskade konnte gezeigt werden, dass über die kleine GTPase RhoA die NF-κB-abhängige Genaktivität reguliert werden kann. Vermutlich aktiviert RhoA dazu die Rho Kinase ROCK, die wiederum das untergeordnete Effektormolekül Rac1 hemmen kann. Im Falle des Lys-Gα12/Gα13-KO führt eine reduzierte Aktivierung von RhoA insgesamt zu einer eingeschränkten Hemmung dieses Signalweges und im Folgenden zu einer außer Kontrolle geratenen Induktion entzündungsrelevanter Gene und damit einhergehend auch zu einer Veränderung des Milieus in der Bauchhöhle dieser Tiere.
Obwohl die Immunantwort in diesen Tieren auf klassische Pathogene wie Lipopolylsaccharide (LPS) unverändert ist, konnte ein Anstieg an peritonealen B-Zellen festgestellt werden. Diese B-Zellen, insbesondere B1 B-Zellen, sind als wichtige Produzenten von natürlichen Antikörpern gegen endogene Pathogene bekannt. Die Analyse von Plasma aus Lys-Gα12/Gα13-KO-Mäusen ergab einen erhöhten Titer für natürliche Antikörper wie beispielsweise gegen oxidierte Formen von atherogenen Lipoproteinen. Diese Erkenntnis führte zu der Frage, ob die ursprünglich pro-inflammatorischen Veränderungen der peritonealen Makrophagen einen indirekten, positiven Einfluss auf die Entwicklung einer Atherosklerose haben können. Interessanterweise sind die Tiere des Lys-Gα12/Gα13-KO signifikant vor Atherosklerose geschützt und die Existenz der natürlichen Antikörper in atherosklerotischen Läsionen wird als Hinweis für ihre protektive Rolle im Krankheitsverlauf angesehen. In einem therapeutischen Ansatz mit peritonealen Zellen konnte in Atherosklerose-gefährdeten Tieren die Progression dieser Gefäßerkrankung eingedämmt werden.
Die hier durchgeführte Studie hat durch in vitro und in vivo Versuche mit Lys-Gα12/Gα13-KO-Mäusen dazu beitragen, das Verständnis der Rolle der G12/13-gekoppelten Signaltransduktion im Immunsystem zu verbessern.
Die Komplexität der verschiedenen Funktionen einzelner Effektormoleküle einerseits und die Interaktionen unterschiedlicher Immunzellpopulationen andererseits lassen jedoch vermuten, dass noch weitreichende Untersuchungen an GPCR und G-Proteinen nötig sind, um diese für den Organismus bedeutsamen Informationssysteme voll-ständig zu verstehen und weiter therapeutisch nutzbar zu machen.
Background and aims: Despite the clinical importance of atherosclerosis, the origin of cells within atherosclerotic plaques is not fully understood. Due to the lack of a definitive lineage-tracing strategy, previous studies have provided controversial results about the origin of cells expressing smooth muscle and macrophage markers in atherosclerosis. We here aim to identify the origin of vascular smooth muscle (SM) cells and macrophages within atherosclerosis lesions.
Methods: We combined a genetic fate mapping approach with single cell expression analysis in a murine model of atherosclerosis.
Results: We found that 16% of CD68-positive plaque macrophage-like cells were derived from mature SM cells and not from myeloid sources, whereas 31% of αSMA-positive smooth muscle-like cells in plaques were not SM-derived. Further analysis at the single cell level showed that SM-derived CD68+ cells expressed higher levels of inflammatory markers such as cyclooxygenase 2 (Ptgs2, p = 0.02), and vascular cell adhesion molecule (Vcam1, p = 0.05), as well as increased mRNA levels of genes related to matrix synthesis such as Col1a2 (p = 0.01) and Fn1 (p = 0.04), than non SM-derived CD68+ cells.
Conclusions: These results demonstrate that smooth muscle cells within atherosclerotic lesions can switch to a macrophage-like phenotype characterized by higher expression of inflammatory and synthetic markers genes that may further contribute to plaque progression.