Refine
Year of publication
Language
- English (576)
Has Fulltext
- yes (576)
Is part of the Bibliography
- no (576)
Keywords
- BESIII (20)
- e +-e − Experiments (18)
- Branching fraction (15)
- Particle and Resonance Production (8)
- Quarkonium (6)
- Charm Physics (5)
- Hadronic decays (5)
- QCD (5)
- Spectroscopy (5)
- Branching fractions (4)
Institute
- Physik (574)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
The decay 𝐽/𝜓→𝛾𝛾𝜙 is studied using a sample of 1.31×109 𝐽/𝜓 events collected with the BESIII detector. Two structures around 1475 MeV/𝑐2 and 1835 MeV/𝑐2 are observed in the 𝛾𝜙 invariant mass spectrum for the first time. With a fit on the 𝛾𝜙 invariant mass, which takes into account the interference between the two structures, and a simple analysis of the angular distribution, the structure around 1475 MeV/𝑐2 is found to favor an assignment as the 𝜂(1475) and the mass and width for the structure around 1835 MeV/𝑐2 are consistent with the 𝑋(1835). The statistical significances of the two structures are 13.5𝜎 and 6.3𝜎, respectively. The results indicate that both 𝜂(1475) and 𝑋(1835) contain a sizeable 𝑠¯𝑠 component.
Using a low background data sample of 9.7×105 𝐽/𝜓→𝛾𝜂′, 𝜂′→𝛾𝜋+𝜋− events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of 𝜂′→𝛾𝜋+𝜋− are studied with both model-dependent and model-independent approaches. The contributions of 𝜔 and the 𝜌(770)−𝜔 interference are observed for the first time in the decays 𝜂′→𝛾𝜋+𝜋− in both approaches. Additionally, a contribution from the box anomaly or the 𝜌(1450) resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
To study the nature of the state Y (2175), a dedicated data set of e+e− collision data was collected at the center-of-mass energy of 2.125 GeV with the BESIII detector at the BEPCII collider. By analyzing large-angle Bhabha scattering events, the integrated luminosity of this data set is determined to be 108.49±0.02±0.85 pb−1, where the first uncertainty is statistical and the second one is systematic. In addition, the center-of-mass energy of the data set is determined with radiative dimuon events to be 2126.55±0.03±0.85 MeV, where the first uncertainty is statistical and the second one is systematic.
By analyzing 2.93 fb−1 of data collected at s√=3.773 GeV with the BESIII detector, we measure the absolute branching fraction B(D+→K¯0μ+νμ)=(8.72±0.07stat.±0.18sys.)%, which is consistent with previous measurements within uncertainties but with significantly improved precision. Combining the Particle Data Group values of B(D0→K−μ+νμ), B(D+→K¯0e+νe), and the lifetimes of the D0 and D+ mesons with the value of B(D+→K¯0μ+νμ) measured in this work, we determine the following ratios of partial widths: Γ(D0→K−μ+νμ)/Γ(D+→K¯0μ+νμ)=0.963±0.044 and Γ(D+→K¯0μ+νμ)/Γ(D+→K¯0e+νe)=0.988±0.033.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+→K0SK0SK+, D+→K0SK0Sπ+, D0→K0SK0S and D0→K0SK0SK0S. They are determined to be B(D+→K0SK0SK+)=(2.54±0.05stat.±0.12sys.)×10−3, B(D+→K0SK0Sπ+)=(2.70±0.05stat.±0.12sys.)×10−3, B(D0→K0SK0S)=(1.67±0.11stat.±0.11sys.)×10−4 and B(D0→K0SK0SK0S)=(7.21±0.33stat.±0.44sys.)×10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
Measurement of the e+e−→π+π− cross section between 600 and 900 MeV using initial state radiation
(2016)
We extract the e+e− →π+π− cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb−1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |Fπ|2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g−2)μ. We find this value to be aππ,LO μ (600–900 MeV) = (368.2 ±2.5stat±3.3sys) ·10−10, which is between the corresponding values using the BaBar or KLOE data.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 10 times larger than the upper limit of χc2→ρ(770)±π∓, which is so far the first direct observation of a significant U-spin symmetry breaking effect in charmonium decays.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.