Refine
Year of publication
Document Type
- Preprint (774)
- Article (692)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (1468)
Has Fulltext
- yes (1468)
Is part of the Bibliography
- no (1468)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Heavy Ion Experiments (14)
- Hadron-Hadron Scattering (12)
- Particle and Resonance Production (10)
- Quarkonium (9)
- QCD (8)
- Charm Physics (7)
- Heavy Quark Production (7)
Institute
- Physik (1338)
- Frankfurt Institute for Advanced Studies (FIAS) (765)
- Informatik (620)
- Informatik und Mathematik (3)
- Medizin (3)
- MPI für Biophysik (2)
- Biochemie und Chemie (1)
- Biodiversität und Klima Forschungszentrum (BiK-F) (1)
- Georg-Speyer-Haus (1)
- Institut für Ökologie, Evolution und Diversität (1)
It is proposed to install an experimental setup in the fixed-target hall of the Nuclotron with the final goal to perform a research program focused on the production of strange matter in heavyion collisions at beam energies between 2 and 6 A GeV. The basic setup will comprise a large acceptance dipole magnet with inner tracking detector modules based on double-sided Silicon micro-strip sensors and GEMs. The outer tracking will be based on the drift chambers and straw tube detector. Particle identification will be based on the time-of-flight measurements. This setup will be sufficient perform a comprehensive study of strangeness production in heavy-ion collisions, including multi-strange hyperons, multi-strange hypernuclei, and exotic multi-strange heavy objects. These pioneering measurements would provide the first data on the production of these particles in heavy-ion collisions at Nuclotron beam energies, and would open an avenue to explore the third (strangeness) axis of the nuclear chart. The extension of the experimental program is related with the study of in-medium effects for vector mesons decaying in hadronic modes. The studies of the NN and NA reactions for the reference is assumed.
Using (2712.4±14.3)×106 ψ(3686) events collected with the BESIII detector at the BEPCII collider, the decay ηc→γγ in J/ψ→γηc is observed for the first time. We determine the product branching fraction B(J/ψ→γηc)×B(ηc→γγ)=(5.23±0.26stat.±0.30syst.)×10−6. This result is well consistent with the LQCD calculation (5.34±0.16)×10−6 from HPQCD in 2023. By using the world-average values of B(J/ψ→γηc) and the total decay width of ηc, the partial decay width Γ(ηc→γγ) is determined to be (11.30±0.56stat.±0.66syst.±1.14ref.) keV, which deviates from the corresponding world-average value by 3.4σ.
The e+e−→D+sDs1(2536)− and e+e−→D+sD∗s2(2573)− processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of Ds1(2536)−→D¯∗0K− and D∗s2(2573)−→D¯0K− are measured for the first time to be (35.9±4.8±3.5)% and (37.4±3.1±4.6)%, respectively. The measurements are in tension with predictions based on the assumption that the Ds1(2536) and D∗s2(2573) are dominated by a bare cs¯ component. The e+e−→D+sDs1(2536)− and e+e−→D+sD∗s2(2573)− cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of 15σ in the e+e−→D+sD∗s2(2573)− process. It could be the Y(4626) found by the Belle collaboration in the D+sDs1(2536)− final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes.
Using (2712±14) × 106 ψ(2S) events collected with the BESIII detector at the BEPCII collider, we search for the decays ηc(2S)→ωω and ηc(2S)→ωϕ via the process ψ(2S)→γηc(2S). Evidence of ηc(2S)→ωω is found with a statistical significance of 3.2σ. The branching fraction is measured to be B(ηc(2S)→ωω)=(5.65±3.77(stat.)±5.32(syst.))×10−4. No statistically significant signal is observed for the decay ηc(2S)→ωϕ. The upper limit of the branching fraction at the 90\% confidence level is determined to be B(ψ(2S)→γηc(2S),ηc(2S)→ωϕ)<2.24×10−7. We also update the branching fractions of χcJ→ωω and χcJ→ωϕ decays via the ψ(2S)→γχcJ transition. The branching fractions are determined to be B(χc0→ωω)=(10.63±0.11±0.46)×10−4, B(χc1→ωω)=(6.39±0.07±0.29)×10−4, B(χc2→ωω)=(8.50±0.08±0.38)×10−4, B(χc0→ωϕ)=(1.18±0.03±0.05)×10−4, B(χc1→ωϕ)=(2.03±0.15±0.12)×10−5, and B(χc2→ωϕ)=(9.37±1.07±0.59)×10−6, where the first uncertainties are statistical and the second are systematic.
The branching fraction of D+→K0Sπ0e+νe is measured for the first time using 7.93 fb−1 of e+e− annihilation data collected at the center-of-mass energy s√=3.773~GeV with the BESIII detector operating at the BEPCII collider, and is determined to be B(D+→K0Sπ0e+νe) = (0.881 ± 0.017stat. ± 0.016syst.)\%. Based on an analysis of the D+→K0Sπ0e+νe decay dynamics, we observe the S-wave and P-wave components with fractions of fS-wave = (6.13 ± 0.27stat. ± 0.30syst.)% and fK¯∗(892)0 = (93.88 ± 0.27stat. ± 0.29syst.)\%, respectively. From these results, we obtain the branching fractions B(D+→(K0Sπ0)S-wave e+νe) = (5.41 ± 0.35stat. ± 0.37syst.)×10−4 and B(D+→K¯∗(892)0e+νe) = (4.97 ± 0.11stat. ± 0.12syst.)\%. In addition, the hadronic form-factor ratios of D+→K¯∗(892)0e+νe at q2=0, assuming a single-pole dominance parameterization, are determined to be rV=V(0)A1(0)=1.43 ± 0.07stat. ± 0.03syst. and r2=A2(0)A1(0)=0.72 ± 0.06stat. ± 0.02syst.
The processes hc→γP(P=η′, η, π0) are studied with a sample of (27.12±0.14)×108 ψ(3686) events collected by the BESIII detector at the BEPCII collider. The decay hc→γη is observed for the first time with the significance of 9.0σ, and the branching fraction is determined to be (3.77±0.55±0.13±0.26)×10−4, while B(hc→γη′) is measured to be (1.40±0.11±0.04±0.10)×10−3, where the first uncertainties are statistical, the second systematic, and the third from the branching fraction of ψ(3686)→π0hc. The combination of these results allows for a precise determination of Rhc=B(hc→γη)B(hc→γη′), which is calculated to be (27.0±4.4±1.0)%. The results are valuable for gaining a deeper understanding of η−η′ mixing, and its manifestation within quantum chromodynamics. No significant signal is found for the decay hc→γπ0, and an upper limit is placed on its branching fraction of B(hc→γπ0)<5.0×10−5, at the 90% confidence level.
The processes hc→γP(P=η′, η, π0)) are studied with a sample of (27.12±0.14)×108 ψ(3686) events collected by the BESIII detector at the BEPCII collider. The branching fractions of hc→γη′ and hc→γη are measured to be (1.40±0.11±0.04±0.10)×10−3 and (3.77±0.55±0.13±0.26)×10−4, respectively, where the first uncertainties are statistical, the second systematic, and the third from the branching fraction of ψ(3686)→π0hc. The ratio Rhc=B(hc→γη)B(hc→γη′) is calculated to be (27.0±4.4±1.0)%. The measurements are consistent with the previous results with improved precision by a factor of 2. The results are valuable for gaining a deeper understanding of η−η′ mixing, and its manifestation within quantum chromodynamics. No significant signal is found for the decay hc→γπ0, and an upper limit is placed on its branching fraction of B(hc→γπ0)<5.0×10−5, at the 90\% confidence level.
Based on (2712.4±14.3)×106 ψ(3686) events, we investigate four hadronic decay modes of the P-wave charmonium spin-singlet state hc(1P1)→h+h−π0/η (h=π or K) via the process ψ(3686)→π0hc at BESIII. The hc→π+π−π0 decay is observed with a significance of 9.6σ after taking into account systematic uncertainties. Evidences for hc→K+K−π0 and hc→K+K−η are found with significances of 3.5σ and 3.3σ, respectively, after considering the systematic uncertainties. The branching fractions of these decays are measured to be B(hc→π+π−π0)=(1.36±0.16±0.14)×10−3, B(hc→K+K−π0)=(3.26±0.84±0.36)×10−4, and B(hc→K+K−η)=(3.13±1.08±0.38)×10−4, where the first uncertainties are statistical and the second are systematic. No significant signal of hc→π+π−η is found, and the upper limit of its decay branching fraction is determined to be B(hc→π+π−η)<4.0×10−4 at 90% confidence level.
We perform the first investigation of the process e+e−→K+K−ψ(2S) and report its Born cross sections over a range of center-of-mass energies from 4.699 to 4.951~GeV. The measurements are carried out using several partial reconstruction techniques using data samples collected by the BESIII detector with a total integrated luminosity of 2.5~fb−1. We search for new tetraquark candidates Z±cs in the decays Z±cs→K±ψ(2S). No significant Z±cs signals are observed.
Model-independent determination of the strong-phase difference between D⁰ and D̄⁰ → π⁺π⁻π⁺π⁻ decays
(2024)
Measurements of the strong-phase difference between D0 and D¯0→π+π−π+π− are performed in bins of phase space. The study exploits a sample of quantum-correlated DD¯ mesons collected by the BESIII experiment in e+e− collisions at a center-of-mass energy of 3.773~GeV, corresponding to an integrated luminosity of 2.93~fb−1. Here, D denotes a neutral charm meson in a superposition of flavor eigenstates. The reported results are valuable for measurements of the CP-violating phase γ (also denoted ϕ3) in B±→DK±, D→π+π−π+π− decays, and the binning schemes are designed to provide good statistical sensitivity to this parameter. The expected uncertainty on γ arising from the precision of the strong-phase measurements, when applied to very large samples of B-meson decays, is around 1.5∘ or 2∘, depending on the binning scheme. The binned strong-phase parameters are combined to give a value of F4π+=0.746±0.010±0.004 for the CP-even fraction of D0→π+π−π+π− decays, which is around 30\% more precise than the previous best measurement of this quantity.