Refine
Year of publication
- 2022 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Physik (1)
This Ph. D. thesis with the title "Characterisation of laser-driven radiation beams: Gamma-ray dosimetry and Monte Carlo simulations of optimised target geometry for record-breaking efficiency of MeV gamma-sources" is dedicated to the study of the acceleration of electrons by intense sub-picosecond laser pulses propagating in a sub-millimeter plasma with near-critical electron density (NCD) and resulting generation of the gamma bremsstrahlung and positrons in the targets of different materials and thickness.
Laser-driven particle acceleration is an area of increasing scientific interest since the recent development of short pulse, high-intensity laser systems. The interaction of intense high-energy, short-pulse lasers with solid targets leads to the production of high-energy electrons in the relativistic laser intensity regime of more than 1018 W /cm2. These electrons play the leading role in the first stage of the interaction of laser with matter, which leads to the creation of laser sources of particles and radiation. Therefore, the optimisation of the electron beam parameters in the direction of increasing the effective temperature and beam charge, together with a slight divergence, plays a decisive role, especially for further detection and characterisation of laser-driven photon and positron beams.
In the context of this work, experiments were carried out at the PHELIX laser system (Petawatt High-Energy Laser for Heavy Ion eXperiments) at GSI Helmholtz Center for Heavy-Ion Research GmbH in Darmstadt, Germany. This thesis presents a thermoluminescence dosimetry (TLD) based method for the measurement of bremsstrahlung spectra in the energy range from 30 keV to 100 MeV. The results of the TLD measurements reinforced the observed tendency towards the strong increase of the mean electron energy and number of super-ponderomotive electrons. In the case of laser interaction with long-scale NCD-plasmas, the dose caused by the gamma-radiation measured in the direction of the laser pulse propagation showed a 1000-fold increase compared to the high contrast shots onto plane foils and doses measured perpendicular to the laser propagation direction for all used combinations of targets and laser parameters.
In this thesis I present novel characterisation method using a combination of TLD measurements and Monte Carlo FLUKA simulations applicable to laser-driven beams. The thermoluminescence detector-based spectrometry method for simultaneous detection of electrons and photons from relativistic laser-induced plasmas initially developed by Behrens et al. (Behrens et al., 2003) and further applied in experiments at PHELIX laser (Horst et al., 2015) delivered good spectral information from keV energies up to some MeV, but as it was presented in (Horst et al., 2015) this method was not really suitable to resolve the content of photon spectra above 10 MeV because of the dominant presence of electrons. Therefore, I created new evaluation method of the incident electron spectra from the readings of TLDs. For this purpose, by means of MatLab programming language an unfolding algorithm was written. It was based on a sequential enumeration of matching data series of the dose values measured by the dosimeters and calculated with of FLUKA-simulations. The significant advantage of this method is the ability to obtain the spectrum of incident electrons in the low energy range from 1 keV, which is very difficult to measure reliably using traditional electron spectrometers.
The results of the evaluation of the effective temperature of super-ponderomotive electrons retrieved from the measured TLD-doses by means of the Monte-Carlo simulations demonstrated, that application of low density polymer foam layers irradiated by the relativistic sub-ps laser pulse provided a strong increase of the electron effective temperature from 1.5 - 2 MeV in the case of the relativistic laser interaction with a metallic foil up to 13 MeV for the laser shots onto the pre-ionized foam and more than 10 times higher charge carried by relativistic electrons.
The progressive simulation method of whole electron spectra described with two -temperatures Maxwellian distribution function has been developed and the results of dose simulations were compared with the acquired experimental data. The advanced feature of this method, which distinguishes it from the results of the simulation of the photon spectrum using the interaction with the target of mono-energetic electron beams (Nilgün Demir, 2013; Nilgün Demir, 2019) or the initial electron spectrum expressed as a function of one electron temperature (Fiorini, 2012), is the ability to simulate the initial electron spectrum described by the Maxwellian distribution function with two temperatures.
The important objective of this thesis was dedicated to the study and characterisation of laser-driven photon beams. In addition to this, the positron beams were evaluated. The investigation of bremsstrahlung photons and positrons spectra from high Z targets by varying the target thickness from 10 µm to 4 mm in simulated models of the interactions of electron spectra with Maxwellian distribution functions allowed to define an optimal thickness when the fluences of photons and positrons are maximal. Furthermore based on the results of FLUKA simulations the gold material was found to be the most suitable for the future experiments as e − γ target because of its highest bremsstrahlung yield.
Additionally Monte Carlo simulations were performed applying the obtained electron beam parameters from the electron acceleration process in laser-plasma interactions simulated with particle-in-cell (PIC) code for two laser energies of 20 J and 200 J. The corresponding electron spectra were imported into a Monte Carlo code FLUKA to simulate the production process of bremsstrahlung photons and positrons in Au converter. FLUKA simulations showed the record conversion of efficiency in MeV gammas can reach 10%, which reinforces the generation of positrons. The obtained results demonstrate the advantages of long-scale plasmas of near critical density (NCD) to increase the parameters of MeV particles and photon beams generated in relativistic laser-plasma interaction. The efficiency of the laser-driven generation of MeV electrons and photons by application of low-density polymer foams is essentially enhanced.