Refine
Document Type
- Article (16)
Language
- English (16)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- Branching fraction (3)
- Electroweak interaction (2)
- Inverse kinematics (2)
- Leptonic, semileptonic & radiative decays (2)
- Shell model (2)
- BESIII (1)
- Charm physics (1)
- Charmed mesons (1)
- Direct reactions (1)
- Electromagnetic form factors (1)
Using data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.178 to 4.600 GeV, we study the process eþe− → π0Xð3872Þγ and search for Zcð4020Þ0 → Xð3872Þγ. We find no significant signal and set upper limits on σðeþe− → π0Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ and σðeþe− → π0Zcð4020Þ0Þ · BðZcð4020Þ0 → Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ for each energy point at 90% confidence level, which is of the order of several tenths pb.
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.
A new technique developed for measuring nuclear reactions at low momentum transfer with stored beams in inverse kinematics was successfully used to study isoscalar giant resonances. The experiment was carried out at the experimental heavy-ion storage ring (ESR) at the GSI facility using a stored 58Ni beam at 100 MeV/u and an internal helium gas-jet target. In these measurements, inelastically scattered α-recoils at very forward center-of-mass angles (θcm ≤ 1.5°) were detected with a dedicated setup, including ultra-high vacuum compatible detectors. Experimental results indicate a dominant contribution of the isoscalar giant monopole resonance at this very forward angular range. It was found that the monopole contribution exhausts 79+12−11% of the energy-weighted sum rule (EWSR), which agrees with measurements performed in normal kinematics. This opens up the opportunity to investigate the giant resonances in a large domain of unstable and exotic nuclei in the near future. It is a fundamental milestone towards new nuclear reaction studies with stored ion beams.
The electromagnetic process is studied with the initial-state-radiation technique using 7.5 fb−1 of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the effective form factor of the proton are measured from the production threshold to 3.0 GeV/ using the invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution.
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.
NeuLAND (New Large-Area Neutron Detector) is the next-generation neutron detector for the R3B (Reactions with Relativistic Radioactive Beams) experiment at FAIR (Facility for Antiproton and Ion Research). NeuLAND detects neutrons with energies from 100 to 1000 MeV, featuring a high detection efficiency, a high spatial and time resolution, and a large multi-neutron reconstruction efficiency. This is achieved by a highly granular design of organic scintillators: 3000 individual submodules with a size of 5 × 5 × 250 cm3 are arranged in 30 double planes with 100 submodules each, providing an active area of 250 × 250 cm2 and a total depth of 3 m. The spatial resolution due to the granularity together with a time resolution of 150 ps ensures high-resolution capabilities. In conjunction with calorimetric properties, a multi-neutron reconstruction efficiency of 50% to 70% for four-neutron events will be achieved, depending on both the emission scenario and the boundary conditions allowed for the reconstruction method. We present in this paper the final design of the detector as well as results from test measurements and simulations on which this design is based.
The Born cross sections of the e+e− → D*+D*− and e+e− → D*+D− processes are measured using e+e− collision data collected with the BESIII experiment at center-of-mass energies from 4.085 to 4.600 GeV, corresponding to an integrated luminosity of 15.7 fb−1. The results are consistent with and more precise than the previous measurements by the Belle, Babar and CLEO collaborations. The measurements are essential for understanding the nature of vector charmonium and charmonium-like states.
The evolution of the traditional nuclear magic numbers away from the valley of stability is an active field of research. Experimental efforts focus on providing key spectroscopic information that will shed light into the structure of exotic nuclei and understanding the driving mechanism behind the shell evolution. In this work, we investigate the spin-orbit shell gap towards the neutron dripline. To do so, we employed (p,2p) quasi-free scattering reactions to measure the proton component of the state of 16,18,20C. The experimental findings support the notion of a moderate reduction of the proton spin-orbit splitting, at variance to recent claims for a prevalent magic number towards the neutron dripline.
The quasi-free scattering reactions 11C(p, 2p) and 10,11,12C(p, pn) have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and protonneutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C(p, 2p) and 12C(p, pn) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of singleparticle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for (p, 2p) are found to be ’significantly smaller than for (p, pn) reactions for all investigated nuclei.
By analyzing 6.32 fb − 1 of e+ e− annihilation data collected at the center-of-mass energies between 4.178 and 4.226 GeV with the BESIII detector, we determine the branching fraction of the leptonic decay D + s → τ + ντ, with τ+ → π + π0¯ντ, to be B D + s → τ + ν τ = (5.29 ± 0.25 stat ± 0.20 syst) %. We estimate the product of the Cabibbo-Kobayashi-Maskawa matrix element |Vcs|and the D + s decay constant f D + s to be f D + s|Vcs| = (244.8 ± 5.8 stat ± 4.8syst) MeV, using the known values of the τ + and D + s masses as well as the D + s lifetime, together with our branching fraction measurement. Combining the value of |Vcs| obtained from a global fit in the standard model and f D + s from lattice quantum chromodynamics, we obtain f D + s = (251.6 ± 5.9 stat ± 4.9syst) MeV and |Vcs| = 0.980 ± 0.023 stat ± 0.019 syst. Using the branching fraction of B D + s → μ + νμ = (5.35±0.21)×10−3, we obtain the ratio of the branching fractions B D + s → τ + ντ/B D +s → μ+νμ = 9.89±0.71, which is consistent with the standard model prediction of lepton flavor universality.