Refine
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- 4-FA (1)
- Ayahuasca (1)
- Cannabis (1)
- Dimethyltryptamine (1)
- Integrative Network Analysis (1)
- Metabolomics (1)
- Psychedelics (1)
- Subjective effects (1)
- cannabis (1)
- chronic (1)
Institute
- Medizin (9)
Availability of novel psychoactive substances (NPS) exponentially increased over the last years. Risk evaluations of NPS are hampered by the lack of pharmacological studies in humans on health parameters. The aim of the present study was to evaluate safety and neurocognitive function of healthy volunteers (N = 12) who received single doses of 100 and 150 mg 4-fluoroamphetamine (4-FA), a phenethylamine that has been associated with severe cardiovascular and cerebrovascular complications. The study was set-up as a placebo controlled, within subject, phase 1 trial as it was the first to administer 4-FA to humans under controlled conditions. Overall, 4-FA produced a strong elevation in blood pressure up until 4-5 h after administration that was followed by a sustained increase in heart rate. After an interim review of safety data from five participants, a decision was taken to cancel administration of 150 mg. We subsequently obtained complete datasets for placebo and 100 mg 4-FA treatments only. Effects of 4-FA on mood and neurocognitive function were most distinct at 1 h post drug and included significant elevations of vigor, friendliness, elation, arousal, positive mood, as well as improvements in attention and motor performance. Negative affect was also reported as time progressed in the acute phase and even more so during the subacute phase. Overall, the influence of 4-FA on vital signs, mood, and neurocognition was similar to that observed with other stimulants. Present findings confirm clinical observations of acute toxicity among 4-FA users and warrant warnings about potential health risks associated with 4-FA use.
Resting state fMRI has been employed to identify alterations in functional connectivity within or between brain regions following acute and chronic exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive component in cannabis. Most studies focused a priori on a limited number of local brain areas or circuits, without considering the impact of cannabis on whole-brain network organization. The present study attempted to identify changes in the whole-brain human functional connectome as assessed with ultra-high field (7T) resting state scans of cannabis users (N = 26) during placebo and following vaporization of cannabis. Two distinct data-driven methodologies, i.e. network-based statistics (NBS) and connICA, were used to identify changes in functional connectomes associated with acute cannabis intoxication and history of cannabis use. Both methodologies revealed a broad state of hyperconnectivity within the entire range of major brain networks in chronic cannabis users compared to occasional cannabis users, which might be reflective of an adaptive network reorganization following prolonged cannabis exposure. The connICA methodology also extracted a distinct spatial connectivity pattern of hypoconnectivity involving the dorsal attention, limbic, subcortical and cerebellum networks and of hyperconnectivity between the default mode and ventral attention network, that was associated with the feeling of subjective high during THC intoxication. Whole-brain network approaches identified spatial patterns in functional brain connectomes that distinguished acute from chronic cannabis use, and offer an important utility for probing the interplay between short and long-term alterations in functional brain dynamics when progressing from occasional to chronic use of cannabis.
Cannabis is the most commonly used illicit drug in the world. However, because of a changing legal landscape and rising interest in therapeutic utility, there is an increasing trend in (long-term) use and possibly cannabis impairment. Importantly, a growing body of evidence suggests that regular cannabis users develop tolerance to the impairing, as well as the rewarding, effects of the drug. However, the neuroadaptations that may underlie cannabis tolerance remain unclear. Therefore, this double-blind, randomized, placebo-controlled, cross-over study assessed the acute influence of cannabis on the brain and behavioral outcomes in two distinct cannabis user groups. Twelve occasional and 12 chronic cannabis users received acute doses of cannabis (300-μg/kg delta-9-tetrahydrocannabinol) and placebo and underwent ultrahigh field functional magnetic resonance imaging and magnetic resonance spectroscopy. In occasional users, cannabis induced significant neurometabolic alterations in reward circuitry, namely, decrements in functional connectivity and increments in striatal glutamate concentrations, which were associated with increases in subjective high and decreases in performance on a sustained attention task. Such changes were absent in chronic users. The finding that cannabis altered circuitry and distorted behavior in occasional, but not chronic users, suggests reduced responsiveness of the reward circuitry to cannabis intoxication in chronic users. Taken together, the results suggest a pharmacodynamic mechanism for the development of tolerance to cannabis impairment, of which is important to understand in the context of the long-term therapeutic use of cannabis-based medications, as well as in the context of public health and safety of cannabis use when performing day-to-day operations.
Cannabis is the most commonly used illicit drug in the world. However due to a changing legal landscape, and rising interest in therapeutic utility, there is an increasing trend in (long-term) use and possibly, cannabis impairment. Importantly, a growing body of evidence suggests regular cannabis users develop tolerance to the impairing, as well as the rewarding, effects of the drug. However, the neuroadaptations that may underlie cannabis tolerance remain unclear. Therefore, this double-blind, randomized, placebo controlled, cross-over study assessed the acute influence of cannabis on brain and behavioral outcomes in two distinct cannabis user groups. Twelve occasional (OUs) and 12 chronic (CUs) cannabis users received acute doses of cannabis (300 μg/kg THC) and placebo, and underwent ultra-high field functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS). In OUs, cannabis induced significant neurometabolic alterations in reward circuitry, namely decrements in functional connectivity and increments in striatal glutamate concentrations, which were associated with increases in subjective high and decreases in performance on a sustained attention task. Such changes were absent in CUs. The finding that cannabis altered circuitry and distorted behavior in OUs, but not CUs, suggests reduced responsiveness of the reward circuitry to cannabis intoxication in chronic users Taken together, the results suggest a pharmacodynamic mechanism for the development of tolerance to cannabis impairment.
Resting state fMRI has been employed to identify alterations in functional connectivity within or between brain regions following acute and chronic exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive component in cannabis. Most studies focused a priori on a limited number of local brain areas or circuits, without considering the impact of cannabis on wholebrain network organization. The present study attempted to identify changes in the wholebrain human functional connectome as assessed with ultra-high field (7T) resting state scans of occasional (N=12) and chronic cannabis users (N=14) during placebo and following vaporization of cannabis. Two distinct data-driven methodologies, i.e. network-based statistics (NBS) and connICA, were used to identify changes in functional connectomes associated with acute cannabis intoxication and chronic cannabis use. Both methodologies revealed a broad state of hyperconnectivity within the entire range of major brain networks in chronic cannabis users compared to occasional cannabis users, which might be reflective of an adaptive network reorganization following prolonged cannabis exposure. The connICA methodology also extracted a distinct spatial connectivity pattern of hypoconnectivity involving the dorsal attention, limbic, subcortical and cerebellum networks and of hyperconnectivity between the default mode and ventral attention network, that was associated with the feeling of subjective high during THC intoxication across both user groups. Whole-brain network approaches identified spatial patterns in functional brain connectomes that distinguished acute from chronic cannabis use, and offer an important utility for probing the interplay between short and long-term alterations in functional brain dynamics when progressing from occasional to chronic use of cannabis.
Assessment of the acute effects of 2C-B vs. psilocybin on subjective experience, mood, and cognition
(2023)
2,5-dimethoxy-4-bromophenethylamine (2C-B) is a hallucinogenic phenethylamine derived from mescaline. Observational and preclinical data have suggested it to be capable of producing both subjective and emotional effects on par with other classical psychedelics and entactogens. Whereas it is the most prevalently used novel serotonergic hallucinogen to date, it's acute effects and distinctions from classical progenitors have yet to be characterized in a controlled study. We assessed for the first time the immediate acute subjective, cognitive, and cardiovascular effects of 2C-B (20 mg) in comparison to psilocybin (15 mg) and placebo in a within-subjects, double-blind, placebo-controlled study of 22 healthy psychedelic-experienced participants. 2C-B elicited alterations of waking consciousness of a psychedelic nature, with dysphoria, subjective impairment, auditory alterations, and affective elements of ego dissolution largest under psilocybin. Participants demonstrated equivalent psychomotor slowing and spatial memory impairments under either compound compared with placebo, as indexed by the Digit Symbol Substitution Test, Tower of London, and Spatial Memory Task. Neither compound produced empathogenic effects on the Multifaceted Empathy Test. 2C-B induced transient pressor effects to a similar degree as psilocybin. The duration of self-reported effects of 2C-B was shorter than that of psilocybin, largely resolving within 6 hours. Present findings support the categorization of 2C-B as a psychedelic of moderate experiential depth at doses given. Tailored dose-effect studies are needed to discern the pharmacokinetic dependency of 2C-B's experiential overlaps.
Assessment of the acute effects of 2C-B vs psilocybin on subjective experience, mood and cognition
(2023)
2,5-dimethoxy-4-bromophenethylamine (2C-B) is a hallucinogenic phenethylamine derived from mescaline. Observational and preclinical data have suggested it to be capable of producing both subjective and emotional effects on par with other classical psychedelics and entactogens. Whereas it is the most prevalently used novel serotonergic hallucinogen to date, it’s acute effects and distinctions from classical progenitors have yet to be characterised in a controlled study. We assessed for the first time the immediate acute subjective, cognitive, and cardiovascular effects of 2C-B (20 mg) in comparison to psilocybin (15mg) and placebo in a within-subjects, double-blind, placebo-controlled study of 22 healthy psychedelic-experienced participants. 2C-B elicited alterations of waking consciousness of a psychedelic nature, with dysphoria, subjective impairment, auditory alterations, and affective elements of ego dissolution largest under psilocybin. Participants demonstrated equivalent psychomotor slowing and spatial memory impairments under either compound compared to placebo, as indexed by the Digit Symbol Substitution Test (DSST), Tower of London (TOL) and Spatial Memory Task (SMT). Neither compound produced empathogenic effects on the Multifaceted Empathy Test (MET). 2C-B induced transient pressor effects to a similar degree as psilocybin. The duration of self-reported effects of 2C-B was shorter than that of psilocybin, largely resolving within 6 hours. Present findings support the categorisation of 2C-B as a subjectively “lighter” psychedelic. Tailored dose-effect studies are needed to discern the pharmacokinetic dependency of 2C-B’s experiential overlaps.
The knowledge that brain functional connectomes are both unique and reliable has enabled behaviourally relevant inferences at a subject level. However, it is unknown whether such “fingerprints” persist under altered states of consciousness. Ayahuasca is a potent serotonergic psychedelic which elicits a widespread dysregulation of functional connectivity. Used communally in religious ceremonies, its shared use may highlight relevant novel interactions between mental state and FC inherency. Using 7T fMRI, we assessed resting-state static and dynamic FCs for 21 Santo Daime members after collective ayahuasca intake in an acute, within-subject study. Here, connectome fingerprinting revealed a shared functional space, accompanied by a spatiotemporal reallocation of keypoint edges. Importantly, we show that interindividual differences in higher-order FCs motifs are relevant to experiential phenotypes, given that they can predict perceptual drug effects. Collectively, our findings offer an example as to how individualised connectivity markers can be used to trace a subject’s functional connectome across altered states of consciousness.
There has been a renewed interest in the potential use of psychedelics for the treatment of psychiatric conditions. Nevertheless, little is known about the mechanism of action and molecular pathways influenced by ayahuasca use in humans. Therefore, for the first time, our study aims to investigate the human metabolomics signature after consumption of a psychedelic, ayahuasca, and its connection with both the psychedelic-induced subjective effects and the plasma concentrations of ayahuasca alkaloids.
Plasma samples of 23 individuals were collected both before and after ayahuasca consumption. Samples were analysed through targeted metabolomics and further integrated with subjective ratings of the ayahuasca experience (i.e., using the 5-Dimension Altered States of Consciousness Rating Scale [ASC]), and plasma ayahuasca-alkaloids using integrated network analysis. Metabolic pathways enrichment analysis using diffusion algorithms for specific KEGG modules was performed on the metabolic output.
Compared to baseline, the consumption of ayahuasca increased N-acyl-ethanolamine endocannabinoids, decreased 2-acyl-glycerol endocannabinoids, and altered several large-neutral amino acids (LNAAs). Integrated network results indicated that most of the LNAAs were inversely associated with 9 out of the 11 subscales of the ASC, except for tryptophan which was positively associated. Several endocannabinoids and hexosylceramides were directly associated with the ayahuasca alkaloids. Enrichment analysis confirmed dysregulation in several pathways involved in neurotransmission such as serotonin and dopamine synthesis.
In conclusion, a crosstalk between the circulating LNAAs and the subjective effects is suggested, which is independent of the alkaloid concentrations and provides insights into the specific metabolic fingerprint and mechanism of action underlying ayahuasca experiences.