Refine
Document Type
- Article (3)
- Contribution to a Periodical (2)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- acyclovir (1)
- basement membrane (1)
- bioequivalence (1)
- blood–brain barrier (1)
- confocal Raman microscopy (1)
- crosslinking (1)
- electrospinning (1)
- extracellular matrix (1)
- gelatin (1)
- human induced pluripotent stem cells (1)
Institute
Purpose: The quality testing and approval procedure for most pharmaceutical products is a streamlined process with standardized procedures for the determination of critical quality attributes. However, the evaluation of semisolid dosage forms for topical drug delivery remains a challenging task. The work presented here highlights confocal Raman microscopy (CRM) as a valuable tool for the characterization of such products.
Methods: CRM, a laser-based method, combining chemically-selective analysis and high resolution imaging, is used for the evaluation of different commercially available topical acyclovir creams.
Results: We show that CRM enables the spatially resolved analysis of microstructural features of semisolid products and provides insights into drug distribution and polymorphic state as well as the composition and arrangement of excipients. Further, we explore how CRM can be used to monitor phase separation and to study skin penetration and the interaction with fresh and cryopreserved excised human skin tissue.
Conclusion: This study presents a comprehensive overview and illustration of how CRM can facilitate several types of key analyses of semisolid topical formulations and of their interaction with their biological target site, illustrating that CRM is a useful tool for research, development as well as for quality testing in the pharmaceutical industry.
The increasing incidence of infected skin wounds poses a major challenge in clinical practice, especially when conventional antibiotic therapy fails. In this context, bacteriophages emerged as promising alternatives for the treatment of antibiotic-resistant bacteria. However, clinical implementation remains hampered by the lack of efficient delivery approaches to infected wound tissue. In this study, bacteriophage-loaded electrospun fiber mats were successfully developed as next-generation wound dressings for the treatment of infected wounds. We employed a coaxial electrospinning approach, creating fibers with a protective polymer shell, enveloping bacteriophages in the core while maintaining their antimicrobial activity. The novel fibers exhibited a reproducible fiber diameter range and morphology, while the mechanical fiber properties were ideal for application onto wounds. Further, immediate release kinetics for the phages were confirmed as well as the biocompatibility of the fibers with human skin cells. Antimicrobial activity was demonstrated against Staphylococcus aureus and Pseudomonas aeruginosa and the core/shell formulation maintained the bacteriophage activity for 4 weeks when stored at − 20 °C. Based on these promising characteristics, our approach holds great potential as a platform technology for the encapsulation of bioactive bacteriophages to enable the translation of phage therapy into clinical application.
Mit vier neuen Clustern bewirbt sich die Goethe-Universität Frankfurt für die anstehende Runde der Exzellenzstrategie des Bundes und der Länder: Es sind die Forschungsthemen Vertrauen im Konflikt (CONTRUST), Infektion und Entzündung (EMTHERA), Ursprung der Schweren Elemente (ELEMENTS) und zelluläre Architekturen (SCALE). Die Anträge vereinen die Kompetenzen und zukunftsweisenden Ideen der Goethe-Universität mit denen der Kolleg:innen des Verbunds der Rhein-Main-Universitäten (RMU) und weiterere Partner der vier großen Organisationen der außeruniversitären Forschung. Der seit 2019 bestehende Exzellenzcluster Cardiopulmonary Institute (CPI) wird im kommenden Jahr direkt einen Vollantrag einreichen. Im UniReport wird regelmäßig über Forschende der Clusterinitiativen und deren Projekte berichtet.
»Die Entwicklung neuer Therapien ist bedeutungslos, wenn sie nicht von der Gesellschaft akzeptiert und angewendet werden. Wir haben dies während der jüngsten Pandemie deutlich erlebt. Daher liegt mir die Vermittlung wissenschaftlicher Erkenntnisse und die Förderung des Dialogs zwischen Wissenschaft und Gesellschaft sehr am Herzen. Veranstaltungen wie das Bürgersymposium spielen eine entscheidende Rolle, indem sie die Brücke zwischen der Forschung und der Öffentlichkeit schlagen«, sagte Prof. Windbergs im Nachgang des Bürgersymposiums. Diese Perspektiven spielen auch eine Rolle im Forschungscluster EMTHERA (EMerging THERApeutic strategies), in dem Prof. Windbergs mit sieben weiteren Wissenschaftler*innen der Goethe-Universität und der Johannes-Gutenberg-Universität das Steering Committee bildet. In enger Zusammenarbeit will das Forschungscluster mithilfe modernste RNA- und proximitätsinduzierender Technologien neue therapeutischer Strategien entwickeln, um die Behandlung von Infektionen mit RNA-Viren und multiresistenten Bakterien, die Eindämmung von Entzündungen und die Verbesserung der Gewebereparatur zu ermöglichen. Durch den Zusammenschluss zweier Parteien der Rhein-Main-Universitäten (RMU) werden komplementäre Expertisen vereint, um in einem interdisziplinären Ansatz hoch relevante Fragestellungen im Bereich neuer Therapiestrategien zu bearbeiten.
The human blood–brain barrier (BBB) represents the interface of microvasculature and the central nervous system, regulating the transport of nutrients and protecting the brain from external threats. To gain a deeper understanding of (patho)physiological processes affecting the BBB, sophisticated models mimicking the in vivo situation are required. Currently, most in vitro models are cultivated on stiff, semipermeable, and non-biodegradable Transwell® membrane inserts, not adequately mimicking the complexity of the extracellular environment of the native human BBB. To overcome these disadvantages, we developed three-dimensional electrospun scaffolds resembling the natural structure of the human extracellular matrix. The polymer fibers of the scaffold imitate collagen fibrils of the human basement membrane, exhibiting excellent wettability and biomechanical properties, thus facilitating cell adhesion, proliferation, and migration. Cultivation of human induced pluripotent stem cells (hiPSCs) on these scaffolds enabled the development of a physiological BBB phenotype monitored via the formation of tight junctions and validated by the paracellular permeability of sodium fluorescein, further accentuating the non-linearity of TEER and barrier permeability. The novel in vitro model of the BBB forms a tight endothelial barrier, offering a platform to study barrier functions in a (patho)physiologically relevant context.