Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
We present the prototype of a regional climate system model based on the COSMO-CLM regional climate model coupled with several model components, analyze the performance of the couplings and present a strategy to find an optimum configuration with respect to computational costs and time to solution.
The OASIS3-MCT coupler is used to couple COSMO-CLM with two land surface models (CLM and VEG3D), a regional ocean model for the Mediterranean Sea (NEMO-MED12), two ocean models for the North and Baltic Sea (NEMO-NORDIC and TRIMNP+CICE) and the atmospheric component of an earth system model (MPI-ESM). We present a unified OASIS3-MCT interface which handles all couplings in a similar way, minimizes the model source code modifications and describes the physics and numerics of the couplings. Furthermore, we discuss solutions for specific regional coupling problems like handling of different domains, multiple usage of MCT interpolation library and efficient exchange of 3D fields.
A series of real-case simulations over Europe has been conducted and the computational performance of the couplings has been analyzed. The usage of the LUCIA tool of the OASIS3-MCT coupler enabled separation of the direct costs of: coupling, load imbalance and additional computations. The resulting limits for time to solution and costs are shown and the potential of further improvement of the computational efficiency is summarized for each coupling.
It was found that the OASIS3-MCT coupler keeps the direct coupling costs of communication and horizontal interpolation small in comparison with the costs of the additional computations and load imbalance for all investigated couplings. For the first time this could be demonstrated for an exchange of approximately 450 2D fields per time step necessary for the atmosphere-atmosphere coupling between COSMO-CLM and MPI-ESM.
A procedure for finding an optimum configuration for each of the couplings was developed considering the time to solution and costs of the simulations. The optimum configurations are presented for sequential and concurrent coupling layouts. The procedure applied can be regarded as independent on the specific coupling layout and coupling details.
We developed a coupled regional climate system model based on the CCLM regional climate model. Within this model system, using OASIS3-MCT as a coupler, CCLM can be coupled to two land surface models (the Community Land Model (CLM) and VEG3D), the NEMO-MED12 regional ocean model for the Mediterranean Sea, two ocean models for the North and Baltic seas (NEMO-NORDIC and TRIMNP+CICE) and the MPI-ESM Earth system model.
We first present the different model components and the unified OASIS3-MCT interface which handles all couplings in a consistent way, minimising the model source code modifications and defining the physical and numerical aspects of the couplings. We also address specific coupling issues like the handling of different domains, multiple usage of the MCT library and exchange of 3-D fields.
We analyse and compare the computational performance of the different couplings based on real-case simulations over Europe. The usage of the LUCIA tool implemented in OASIS3-MCT enables the quantification of the contributions of the coupled components to the overall coupling cost. These individual contributions are (1) cost of the model(s) coupled, (2) direct cost of coupling including horizontal interpolation and communication between the components, (3) load imbalance, (4) cost of different usage of processors by CCLM in coupled and stand-alone mode and (5) residual cost including i.a. CCLM additional computations.
Finally a procedure for finding an optimum processor configuration for each of the couplings was developed considering the time to solution, computing cost and parallel efficiency of the simulation. The optimum configurations are presented for sequential, concurrent and mixed (sequential+concurrent) coupling layouts. The procedure applied can be regarded as independent of the specific coupling layout and coupling details.
We found that the direct cost of coupling, i.e. communications and horizontal interpolation, in OASIS3-MCT remains below 7 % of the CCLM stand-alone cost for all couplings investigated. This is in particular true for the exchange of 450 2-D fields between CCLM and MPI-ESM. We identified remaining limitations in the coupling strategies and discuss possible future improvements of the computational efficiency.
Air-sea feedbacks between the Mediterranean Sea and the atmosphere on various temporal and spatial scales play a major role in the Mediterranean regional climate system and beyond. The Mediterranean Sea is a source of moisture due to excess evaporation and, on a long-term average, is associated with a warming of the lower atmosphere in contact with the sea surface due to heat loss at the air-sea interface. The complex air-sea interactions and feedbacks in the Mediterranean basin strongly modulate the sea surface fluxes and favor several cyclogenetic activities under certain meteorological conditions. Examples of such cyclonic activities are medicanes (Mediterranean hurricanes) and Vb-cyclones. Medicanes are mesoscale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones, while Vb-cyclones are extra-tropical cyclones, that propagate from the Western Mediterranean Sea and travel across the Eastern European Alps into the Central European region. Extremely strong winds and heavy precipitation associated with these cyclones can lead to severe destruction and flooding. Changes in the intensity and frequency of these cyclones are also projected under changing future climate conditions, where the Mediterranean region has been identified as a hotspot in terms of rising temperatures.
The development of high-resolution regional climate models (RCMs) has progressed our understanding of the processes characterizing the Mediterranean climate. However, large uncertainties still exist regarding the estimates of air-sea fluxes, which, in turn, affect the simulation of the Mediterranean climate. Several factors can be attributed to such discrepancies, such as data quality, temporal and spatial resolution, and the misrepresentation of physical processes. To overcome some of these inconsistencies and deficiencies of the existing climate simulations, a new high-resolution atmosphere-ocean regional coupled model (AORCM) has been developed to simulate the air-sea feedback mechanisms. This coupled model incorporates the coupling of RCM COSMO-CLM (CCLM) and the regional ocean model NEMO-MED12 for the Mediterranean Sea (MED) as well as NEMO-NORDIC for the North- and Baltic Sea (NORDIC). Several experiments were performed using both the coupled and uncoupled models to investigate the impact of air-sea interactions and feedbacks on sea surface heat fluxes, wind speed, and on the formation of Mediterranean cyclones (i.e., medicanes and Vb-cyclones). These experiments were performed using different horizontal atmospheric grid resolutions to analyze the effect of resolution on sea surface heat fluxes, wind speed, and the development of medicanes.
The results of the present study indicate that a finer atmospheric grid resolution ([is as appreciated as]9 vs. [is as appreciated as]50 km) improved the wind speed simulations (particularly near coastal areas) and subsequently improved the simulations of the turbulent heat fluxes. Both parameters were better simulated in the coupled simulations than in the uncoupled simulations, but coupling introduced a warm SST bias in winter. Radiation fluxes were slightly better represented in coarse-grid simulations than in fine-grid simulations. However, the higher-resolution coupled model could reproduce the observed net outgoing total surface heat flux over the Mediterranean Sea. In addition to that sub diurnal SST variations have a strong effect on sub-daily heat fluxes and wind speed but minor effects at longer timescales. Regarding the impact of atmospheric grid resolution ([is as appreciated as]50, 25, and [is as appreciated as]9 km) and ocean coupling on medicanes, it was detected that the coupled model with a finer atmospheric grid ([is as appreciated as]9 km) was able to not only reproduce most medicane events, but also improved the track length, warm core, and wind speed compared to the uncoupled model. The coupled model with the coarse-grid ([is as appreciated as]50 and [is as appreciated as]25 km) did not show any improvement in simulating medicanes compared to the uncoupled model. The spectral nudging technique, applied on the wind components above 850 hPa in the interior domain to keep large-scale circulation close to the driving data (i.e., ERAInterim reanalysis), improved the accuracy of the times and locations of generated medicanes, but no improvement was found in the track length and intensity.
Concerning the role of the Mediterranean Sea coupling on Vb cyclones, the investigation showed that atmosphere-ocean coupling had an overall positive impact, although with a strong case-by-case variation, on the trajectories and intensity of Vb-cyclones as a result of the variation in moisture source for each event. In general, all model configurations could replicate Vbcyclones, their trajectories, and associated precipitation fields. The average structure of the precipitation field was best represented in the coupled simulations. Coupling of the North- and Baltic Seas also showed an improvement in some of the simulated Vb-cyclones.
The atmosphere-ocean coupling showed an overall positive impact on the simulation of sea surface heat fluxes and Mediterranean cyclones (medicanes and Vb-cyclones). Moreover, the representation of sea surface heat fluxes, wind speed, and medicane features was more realistic when using a finer atmospheric grid resolution (less than 10 km). The present study suggests that the combination of a finer atmospheric grid resolution together with atmosphere-ocean coupling is advantageous in simulating the Mediterranean climate system.
So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°). The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.
The frequency of extreme events has changed, having a direct impact on human lives. Regional climate models help us to predict these regional climate changes. This work presents an atmosphere–ocean coupled regional climate system model (RCSM; with the atmospheric component COSMO-CLM and the ocean component NEMO) over the European domain, including three marginal seas: the Mediterranean, North, and Baltic Sea. To test the model, we evaluate a simulation of more than 100 years (1900–2009) with a spatial grid resolution of about 25 km. The simulation was nested into a coupled global simulation with the model MPI-ESM in a low-resolution configuration, whose ocean temperature and salinity were nudged to the ocean–ice component of the MPI-ESM forced with the NOAA 20th Century Reanalysis (20CR). The evaluation shows the robustness of the RCSM and discusses the added value by the coupled marginal seas over an atmosphere-only simulation. The coupled system is stable for the complete 20th century and provides a better representation of extreme temperatures compared to the atmosphere-only model. The produced long-term dataset will help us to better understand the processes leading to meteorological and climate extremes.
This study aims to assess the skill of regional climate models (RCMs) at reproducing the climatology of Mediterranean cyclones. Seven RCMs are considered, five of which were also coupled with an oceanic model. All simulations were forced at the lateral boundaries by the ERA-Interim reanalysis for a common 20-year period (1989–2008). Six different cyclone tracking methods have been applied to all twelve RCM simulations and to the ERA-Interim reanalysis in order to assess the RCMs from the perspective of different cyclone definitions. All RCMs reproduce the main areas of high cyclone occurrence in the region south of the Alps, in the Adriatic, Ionian and Aegean Seas, as well as in the areas close to Cyprus and to Atlas mountains. The RCMs tend to underestimate intense cyclone occurrences over the Mediterranean Sea and reproduce 24–40 % of these systems, as identified in the reanalysis. The use of grid nudging in one of the RCMs is shown to be beneficial, reproducing about 60 % of the intense cyclones and keeping a better track of the seasonal cycle of intense cyclogenesis. Finally, the most intense cyclones tend to be similarly reproduced in coupled and uncoupled model simulations, suggesting that modeling atmosphere–ocean coupled processes has only a weak impact on the climatology and intensity of Mediterranean cyclones.
This paper is a contribution to the special issue on Med-CORDEX, an international coordinated initiative dedicated to the multi-component regional climate modelling (atmosphere, ocean, land surface, river) of the Mediterranean under the umbrella of HyMeX, CORDEX, and Med-CLIVAR and coordinated by Samuel Somot, Paolo Ruti, Erika Coppola, Gianmaria Sannino, Bodo Ahrens, and Gabriel Jordà.