Refine
Year of publication
Document Type
- Article (27)
Language
- English (27)
Has Fulltext
- yes (27)
Is part of the Bibliography
- no (27)
Keywords
- Multiple sclerosis (2)
- Neuroinflammation (2)
- ceramides (2)
- inflammation (2)
- macrophage (2)
- pain (2)
- sphingolipids (2)
- sphingosine kinase (2)
- stroke (2)
- AMP-activated kinase (1)
Institute
- Medizin (25)
- Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (4)
- Biowissenschaften (2)
- Pharmazie (2)
- Sonderforschungsbereiche / Forschungskollegs (2)
- Biochemie, Chemie und Pharmazie (1)
- Institut für Ökologie, Evolution und Diversität (1)
- Interdisziplinäres Zentrum für Neurowissenschaften Frankfurt (IZNF) (1)
- Senckenbergische Naturforschende Gesellschaft (1)
Macrophages are highly versatile cells, which acquire, depending on their microenvironment, pro- (M1-like), or antiinflammatory (M2-like) phenotypes. Here, we studied the role of the G-protein coupled receptor G2A (GPR132), in chemotactic migration and polarization of macrophages, using the zymosan-model of acute inflammation. G2A-deficient mice showed a reduced zymosan-induced thermal hyperalgesia, which was reversed after macrophage depletion. Fittingly, the number of M1-like macrophages was reduced in the inflamed tissue in G2A-deficient mice. However, G2A activation was not sufficient to promote M1-polarization in bone marrow-derived macrophages. While the number of monocyte-derived macrophages in the inflamed paw was not altered, G2A-deficient mice had less macrophages in the direct vicinity of the origin of inflammation, an area marked by the presence of zymosan, neutrophil accumulation and proinflammatory cytokines. Fittingly neutrophil efferocytosis was decreased in G2A-deficient mice and several lipids, which are released by neutrophils and promote G2A-mediated chemotaxis, were increased in the inflamed tissue. Taken together, G2A is necessary to position macrophages in the proinflammatory microenvironment surrounding the center of inflammation. In absence of G2A the macrophages are localized in an antiinflammatory microenvironment and macrophage polarization is shifted toward M2-like macrophages.
Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs). However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs) as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP) genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18:1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18:1, 9-and 13-HODE and HETEs.
Background: Sphingolipids constitute bioactive molecules with functional implications in liver homeostasis. Particularly, ablation of very long chain ceramides in a knockout mouse model has been shown to cause a severe hepatopathy.
Methods: We aimed to evaluate the serum sphingolipid profile of 244 patients with cirrhosis prospectively followed for a median period of 228±217 days via mass spectrometry.
Results: We thereby observed a significant decrease of long and very long chain ceramides, particularly of C24ceramide, in patients with increasing severity of cirrhosis (p<0.001). Additionally, hydropic decompensation, defined by clinical presentation of ascites formation, was significantly correlated to low C24ceramide levels (p<0.001) while a significant association to hepatic decompensation and poor overall survival was observed for low serum concentrations of C24ceramide (p<0.001) as well. Multivariate analysis further identified low serum C24ceramide to be independently associated to overall survival (standard beta = -0.001, p = 0.022).
Conclusions: In our current analysis serum levels of very long chain ceramides show a significant reciprocal correlation to disease severity and hepatic decompensation and are independently associated with overall survival in patients with cirrhosis. Serum sphingolipid metabolites and particularly C24ceramide may constitute novel molecular targets of disease severity, hepatic decompensation and overall prognosis in cirrhosis and should be further evaluated in basic research studies.
Patients after orthopic liver transplantation (OLT) are at risk of developing graft dysfunction. Sphingolipids (SL’s) have been identified to play a pivotal role in the regulation of hepatocellular apoptosis, inflammation and immunity. We aimed to investigate the serum SL profile in a prospective real-world cohort of post-OLT patients. From October 2015 until July 2016, 149 well-characterized post-OLT patients were analyzed. SL’s were assessed in serum probes via Liquid Chromatography/Tandem Mass Spectrometry. Twenty-nine (20%) patients had a biopsy proven graft rejection with decreased C20-ceramide (Cer) (p = 0.042), C18-dihydroceramide (DHC) (p = 0.022) and C24DHC (p = 0.060) levels. Furthermore, C18DHC (p = 0.044) and C24DHC (p = 0.011) were significantly down-regulated in patients with ischemic type biliary lesions (ITBL; n = 15; 10%). One-hundred and thirty-three patients (89%) have so far received tacrolimus as the main immunosuppressive agent with observed elevations of C14Cer (p = 0.052), C18Cer (p = 0.049) and C18:1Cer (p = 0.024). Hepatocellular carcinoma (HCC) pre-OLT was associated with increases in C24:1Cer (p = 0.024) and C24:1DHC (p = 0.024). In this large prospective cross-sectional study of patients, post-OLT serum levels of (very-)long chain (dihydro-)ceramides associate with graft rejection, ITBL, tacrolimus intake and HCC pre-OLT. Hence, serum SL’s may be indicative of graft complications. Further research is necessary to identify their diverse mechanistic role in regulating immunity and inflammation in patients post-OLT.
Bacterial and fungal toll-like receptor activation elicits type I IFN responses in mast cells
(2021)
Next to their role in IgE-mediated allergic diseases and in promoting inflammation, mast cells also have antiinflammatory functions. They release pro- as well as antiinflammatory mediators, depending on the biological setting. Here we aimed to better understand the role of mast cells during the resolution phase of a local inflammation induced with the Toll-like receptor (TLR)-2 agonist zymosan. Multiple sequential immunohistology combined with a statistical neighborhood analysis showed that mast cells are located in a predominantly antiinflammatory microenvironment during resolution of inflammation and that mast cell-deficiency causes decreased efferocytosis in the resolution phase. Accordingly, FACS analysis showed decreased phagocytosis of zymosan and neutrophils by macrophages in mast cell-deficient mice. mRNA sequencing using zymosan-induced bone marrow-derived mast cells (BMMC) revealed a strong type I interferon (IFN) response, which is known to enhance phagocytosis by macrophages. Both, zymosan and lipopolysaccharides (LPS) induced IFN-β synthesis in BMMCs in similar amounts as in bone marrow derived macrophages. IFN-β was expressed by mast cells in paws from naïve mice and during zymosan-induced inflammation. As described for macrophages the release of type I IFNs from mast cells depended on TLR internalization and endosome acidification. In conclusion, mast cells are able to produce several mediators including IFN-β, which are alone or in combination with each other able to regulate the phagocytotic activity of macrophages during resolution of inflammation.
The activation and infiltration of polymorphonuclear neutrophils (PMN) are critical key steps in inflammation. PMN-mediated inflammation is limited by anti-inflammatory and pro-resolving mechanisms, including specialized pro-resolving lipid mediators (SPM). We examined the effects of 15-epi-LXA4 on inflammation and the biosynthesis of pro-inflammatory mediators, such as prostaglandins, leukotriene B4 and various hydroxyeicosatetraenoic acids and SPM, in an oxazolone (OXA)-induced hypersensitivity model for dermal inflammation. 15-epi-LXA4 (100 μM, 5 μL subcutaneously injected) significantly (P < 0.05) reduced inflammation in skin, 24 hours after the OXA challenge, as compared to skin treated with vehicle. No significant influence on the biosynthesis of prostaglandins or leukotriene B4 was observed, whereas the level of 15S-hydroxy-eicosatetraenoic acid was significantly (P < 0.05) lower in the skin areas treated with 15-epi-LXA4. In spite of the use of a fully validated analytical procedure, no SPM were detected in the biological samples. To investigate the reason for the lack of analytical signal, we tried to mimic the production of SPM (lipoxins, resolvins, maresin and protectin) by injecting them subcutaneously into the skin of mice and studying the in vivo availability and distribution of the compounds. All analytes showed very little lateral distribution in skin tissue and their levels were markedly decreased (> 95%) 2 hours after injection. However, docosahexaenoic acid derivatives were biologically more stable than SPM derived from arachidonic acid or eicosapentaenoic acid.
Hepatitis C virus (HCV) substantially affects lipid metabolism, and remodeling of sphingolipids appears to be essential for HCV persistence in vitro. The aim of the current study is the evaluation of serum sphingolipid variations during acute HCV infection. We enrolled prospectively 60 consecutive patients with acute HCV infection, most of them already infected with human immunodeficiency virus (HIV), and serum was collected at the time of diagnosis and longitudinally over a six-month period until initiation of antiviral therapy or confirmed spontaneous clearance. Quantification of serum sphingolipids was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Spontaneous clearance was observed in 11 out of 60 patients (18.3%), a sustained viral response (SVR) in 43 out of 45 patients (95.5%) receiving an antiviral treatment after follow-up, whereas persistence of HCV occurred in six out of 60 patients (10%). C24-ceramide (C24-Cer)-levels increased at follow-up in patients with spontaneous HCV eradication (p < 0.01), as compared to baseline. Sphingosine and sphinganine values were significantly upregulated in patients unable to clear HCV over time compared to patients with spontaneous clearance of HCV infection on follow-up (p = 0.013 and 0.006, respectively). In summary, the persistence of HCV after acute infection induces a downregulation of C24Cer and a simultaneous elevation of serum sphingosine and sphinganine concentrations.
Background: Autotaxin (ATX) and its product lysophosphatidic acid (LPA) are considered to be involved in the development of liver fibrosis and elevated levels of serum ATX have been found in patients with hepatitis C virus associated liver fibrosis. However, the clinical role of systemic ATX in the stages of liver cirrhosis was unknown. Here we investigated the relation of ATX serum levels and severity of cirrhosis as well as prognosis of cirrhotic patients.
Methods: Patients with liver cirrhosis were prospectively enrolled and followed until death, liver transplantation or last contact. Blood samples drawn at the day of inclusion in the study were assessed for ATX content by an enzyme-linked immunosorbent assay. ATX levels were correlated with the stage as well as complications of cirrhosis. The prognostic value of ATX was investigated by uni- and multivariate Cox regression analyses. LPA concentration was determined by liquid chromatography-tandem mass spectrometry.
Results: 270 patients were enrolled. Subjects with liver cirrhosis showed elevated serum levels of ATX as compared to healthy subjects (0.814±0.42 mg/l vs. 0.258±0.40 mg/l, P<0.001). Serum ATX levels correlated with the Child-Pugh stage and the MELD (model of end stage liver disease) score and LPA levels (r = 0.493, P = 0.027). Patients with hepatic encephalopathy (P = 0.006), esophageal varices (P = 0.002) and portal hypertensive gastropathy (P = 0.008) had higher ATX levels than patients without these complications. Low ATX levels were a parameter independently associated with longer overall survival (hazard ratio 0.575, 95% confidence interval 0.365–0.905, P = 0.017).
Conclusion: Serum ATX is an indicator for the severity of liver disease and the prognosis of cirrhotic patients.
BACKGROUND: Human SAMHD1 is a triphosphohydrolase that restricts the replication of retroviruses, retroelements and DNA viruses in noncycling cells. While modes of action have been extensively described for human SAMHD1, only little is known about the regulation of SAMHD1 in the mouse. Here, we characterize the antiviral activity of murine SAMHD1 with the help of knockout mice to shed light on the regulation and the mechanism of the SAMHD1 restriction and to validate the SAMHD1 knockout mouse model for the use in future infectivity studies.
RESULTS: We found that endogenous mouse SAMHD1 restricts not only HIV-1 but also MLV reporter virus infection at the level of reverse transcription in primary myeloid cells. Similar to the human protein, the antiviral activity of murine SAMHD1 is regulated through phosphorylation at threonine 603 and is limited to nondividing cells. Comparing the susceptibility to infection with intracellular dNTP levels and SAMHD1 phosphorylation in different cell types shows that both functions are important determinants of the antiviral activity of murine SAMHD1. In contrast, we found the proposed RNase activity of SAMHD1 to be less important and could not detect any effect of mouse or human SAMHD1 on the level of incoming viral RNA.
CONCLUSION: Our findings show that SAMHD1 in the mouse blocks retroviral infection at the level of reverse transcription and is regulated through cell cycle-dependent phosphorylation. We show that the antiviral restriction mediated by murine SAMHD1 is mechanistically similar to what is known for the human protein, making the SAMHD1 knockout mouse model a valuable tool to characterize the influence of SAMHD1 on the replication of different viruses in vivo.
Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis
(2017)
Bioactive lipids contribute to the pathophysiology of multiple sclerosis. Here, we show that lysophosphatidic acids (LPAs) are dysregulated in multiple sclerosis (MS) and are functionally relevant in this disease. LPAs and autotaxin, the major enzyme producing extracellular LPAs, were analyzed in serum and cerebrospinal fluid in a cross-sectional population of MS patients and were compared with respective data from mice in the experimental autoimmune encephalomyelitis (EAE) model, spontaneous EAE in TCR1640 mice, and EAE in Lpar2 -/- mice. Serum LPAs were reduced in MS and EAE whereas spinal cord LPAs in TCR1640 mice increased during the ‘symptom-free’ intervals, i.e. on resolution of inflammation during recovery hence possibly pointing to positive effects of brain LPAs during remyelination as suggested in previous studies. Peripheral LPAs mildly re-raised during relapses but further dropped in refractory relapses. The peripheral loss led to a redistribution of immune cells from the spleen to the spinal cord, suggesting defects of lymphocyte homing. In support, LPAR2 positive T-cells were reduced in EAE and the disease was intensified in Lpar2 deficient mice. Further, treatment with an LPAR2 agonist reduced clinical signs of relapsing-remitting EAE suggesting that the LPAR2 agonist partially compensated the endogenous loss of LPAs and implicating LPA signaling as a novel treatment approach.