Refine
Document Type
- Preprint (3)
- Article (2)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
Die neuronalen Mechanismen, welche den meisten kognitiven Prozessen zu Grunde liegen, bestehen aus dem Zusammenspiel verschiedener Neuronen-Typen und deren spezifischen Funktionsmechanismen, sowohl in lokalen, als auch in globalen neuronalen Netzwerken. Eine funktionelle Interaktion mit diesen Netzwerken ist unumgänglich um das „kognitive“ Gehirn zu studieren, da neuronale Gruppen in einer hierarchischen, nicht linearen Weise miteinander interagieren, und dabei charakteristische raum-zeitliche Muster aufweisen. In dieser Arbeit untersuchten wir die Struktur und Funktion eines wichtigen Merkmals kortikaler Prozesse: Die neuronale gamma-Band Oszillation.
Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We used optogenetics to generate depolarizing currents in pyramidal neurons of cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. Cortex transformed constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increased the strength and frequency of synchronization. Slow, symmetric excitation profiles revealed hysteresis of power and frequency. Crucially, white-noise input sequences enabled causal analysis of network transmission, establishing that cortical resonance selectively transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncovered a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission.
Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We use optogenetics to generate depolarizing currents in pyramidal neurons of the cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. The cortex transforms constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increases the strength and frequency of synchronization. Slow, symmetric excitation profiles reveal hysteresis of power and frequency. White-noise input sequences enable causal analysis of network transmission, establishing that the cortical gamma-band resonance preferentially transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncover a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission.
The gamma rhythm has been implicated in neuronal communication, but causal evidence remains indirect. We measured spike output of local neuronal networks and emulated their synaptic input through optogenetics. Opsins provide currents through somato-dendritic membranes, similar to synapses, yet under experimental control with high temporal precision. We expressed Channelrhodopsin-2 in excitatory neurons of cat visual cortex and recorded neuronal responses to light with different temporal characteristics. Sine waves of different frequencies entrained neuronal responses with a reliability that peaked for input frequencies in the gamma band. Crucially, we also presented white-noise sequences, because their temporal unpredictability enables analysis of causality. Neuronal spike output was caused specifically by the input’s gamma component. This gamma-specific transfer function is likely an emergent property of in-vivo networks with feedback inhibition. The method described here could reveal the transfer function between the input to any one and the output of any other neuronal group.
Cognition requires the dynamic modulation of effective connectivity, i.e., the modulation of the postsynaptic neuronal response to a given input. If postsynaptic neurons are rhythmically active, this might entail rhythmic gain modulation, such that inputs synchronized to phases of high gain benefit from enhanced effective connectivity. We show that visually induced gamma-band activity in awake macaque area V4 rhythmically modulates responses to unpredictable stimulus events. This modulation exceeded a simple additive superposition of a constant response onto ongoing gamma-rhythmic firing, demonstrating the modulation of multiplicative gain. Gamma phases leading to strongest neuronal responses also led to shortest behavioral reaction times, suggesting functional relevance of the effect. Furthermore, we find that constant optogenetic stimulation of anesthetized cat area 21a produces gamma-band activity entailing a similar gain modulation. As the gamma rhythm in area 21a did not spread backward to area 17, this suggests that postsynaptic gamma is sufficient for gain modulation.
Cognition requires the dynamic modulation of effective connectivity, i.e. the modulation of the postsynaptic neuronal response to a given input. If postsynaptic neurons are rhythmically active, this might entail rhythmic gain modulation, such that inputs synchronized to phases of high gain benefit from enhanced effective connectivity. We show that visually induced gamma-band activity in awake macaque area V4 rhythmically modulates responses to unpredictable stimulus events. This modulation exceeded a simple additive superposition of a constant response onto ongoing gamma-rhythmic firing, demonstrating the modulation of multiplicative gain. Gamma phases leading to strongest neuronal responses also led to shortest behavioral reaction times, suggesting functional relevance of the effect. Furthermore, we find that constant optogenetic stimulation of anesthetized cat area 21a produces gamma-band activity entailing a similar gain modulation. As the gamma rhythm in area 21a did not spread backwards to area 17, this suggests that postsynaptic gamma is sufficient for gain modulation.