### Refine

#### Document Type

- Article (3)

#### Language

- English (3)

#### Has Fulltext

- yes (3)

#### Is part of the Bibliography

- no (3)

#### Keywords

#### Institute

We provide a Hopf boundary lemma for the regional fractional Laplacian (−Δ)sΩ, with Ω ⊂ RN a bounded open set. More precisely, given u a pointwise or weak super-solution of the equation (−Δ)s u = c(x)u in Ω, we show that the ratio u(x)∕(dist(x, 𝜕Ω))2s−1 is strictly Ω positive as x approaches the boundary 𝜕Ω of Ω. We also prove a strong maximum principle for distributional super-solutions.

We show how nonlocal boundary conditions of Robin type can be encoded in the pointwise expression of the fractional operator. Notably, the fractional Laplacian of functions satisfying homogeneous nonlocal Neumann conditions can be expressed as a regional operator with a kernel having logarithmic behaviour at the boundary.

We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians (-△)ˢ of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of s-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for s ∈ (1; √3 + 3/2) in any dimension n ≥ 2. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties either and we give some examples.