Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
Institute
- Medizin (5)
The indications for allogeneic stem cell transplantation (SCT) in Acute Myeloid Leukemia (AML) represent a real challenge due to the clinical and genetic heterogeneity of the disorder. Therefore, an optimized indication for SCT in AML first requires the determination of the individual relapse risk based on diverse chromosomal and molecular prognosis-defining aberrations. A broad panel of diagnostic methods is needed to allow such subclassification and prognostic stratification: cytomorphology, cytogenetics, molecular genetics, and immunophenotyping by multiparameter flow cytometry. These methods should not be seen as isolated techniques but as parts of an integral network with hierarchies and interactions. Examples for a poor risk constellation as a clear indication for allogeneic SCT are provided by anomalies of chromosome 7, complex aberrations, or FLT3-length mutations. In contrast, the favorable reciprocal translocations such as the t(15;17)/PML-RARA or t(8;21)/AML1-ETO are not indications for SCT in first remission due to the rather good prognosis after standard therapy. Further, the indication for SCT should include the results of minimal residual disease (MRD) diagnostics by polymerase chain reaction (PCR) or flow cytometry. New aspects for a safe and fast risk stratification as basis for an optimized indication for SCT in AML might be provided by novel technologies such as microarray-based gene expression profiling. Keywords: Acute Myeloid Leukemia (AML), Allogeneic Stem Cell Transplantation (SCT), Indication, Cytogenetics, Polymerase Chain Reaction (PCR)
Allogeneic hematopoietic cell transplantation (allo-HCT) is increasingly used in older myelofibrosis (MF) patients, but its risk/benefit ratio compared to non-transplant approaches has not been evaluated in this population. We analyzed the outcomes of allo-HCT in 556 MF patients aged ≥65 years from the EBMT registry, and determined the excess mortality over the matched general population of MF patients ≥65 years managed with allo-HCT (n = 556) or conventional drug treatment (n = 176). The non-transplant cohort included patients with intermediate-2 or high risk DIPSS from the Spanish Myelofibrosis Registry. After a median follow-up of 3.4 years, the estimated 5-year survival rate, non-relapse mortality (NRM), and relapse incidence after transplantation was 40%, 37%, and 25%, respectively. Busulfan-based conditioning was associated with decreased mortality (HR: 0.7, 95% CI: 0.5–0.9) whereas the recipient CMV+/donor CMV- combination (HR: 1.7, 95% CI: 1.2–2.4) and the JAK2 mutated genotype (HR: 1.9, 95% CI: 1.1–3.5) predicted higher mortality. Busulfan-based conditioning correlated with improved survival due to less NRM, despite its higher relapse rate when compared with melphalan-based regimens. Excess mortality was higher in transplanted patients than in the non-HCT cohort in the first year of follow-up (ratio: 1.93, 95% CI: 1.13–2.80), whereas the opposite occurred between the fourth and eighth follow-up years (ratio: 0.31, 95% CI: 0.18–0.53). Comparing the excess mortality of the two treatments, male patients seemed to benefit more than females from allo-HCT, mainly due to their worse prognosis with non-transplant approaches. These findings could potentially enhance counseling and treatment decision-making in elderly transplant-eligible MF patients.
A record number of 39 209 HSCT in 34 809 patients (14 950 allogeneic (43%) and 19 859 autologous (57%)) were reported by 658 centers in 48 countries to the 2013 survey. Trends include: more growth in allogeneic than in autologous HSCT, increasing use of sibling and unrelated donors and a pronounced increase in haploidentical family donors when compared with cord blood donors for those patients without a matched related or unrelated donor. Main indications were leukemias, 11 190 (32%; 96% allogeneic); lymphoid neoplasias, 19 958 (57%; 11% allogeneic); solid tumors, 1543 (4%; 4% allogeneic); and nonmalignant disorders, 1975 (6%; 91% allogeneic). In patients without a matched sibling or unrelated donor, alternative donors are used. Since 2010 there has been a marked increase of 96% in the number of transplants performed from haploidentical relatives (802 in 2010 to 1571 in 2013), whereas the number of unrelated cord blood transplants has slightly decreased (789 in 2010 to 666 in 2013). The use of donor type varies greatly throughout Europe.
Maintenance therapy after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) is conceptually attractive to prevent relapse, but has been hampered by the limited number of suitable anti-leukemic agents. The deacetylase inhibitor (DACi) panobinostat demonstrated moderate anti-leukemic activity in a small subset of patients with advanced AML and high-risk MDS in phase I/II trials.1, 2 It also displays immunomodulatory activity3 that may enhance leukemia-specific cytotoxicity4 and mitigate graft versus host disease (GvHD), but conversely could impair T- and NK cell function.5, 6 We conducted this open-label, multi-center phase I/II trial (NCT01451268) to assess the feasibility and preliminary efficacy of prolonged prophylactic administration of panobinostat after HSCT for AML or MDS. The study protocol was approved by an independent ethics committee and conducted in compliance with the Declaration of Helsinki. All patients provided written informed consent. ...
Chimeric antigen receptor (CAR) T cells are a novel class of anti-cancer therapy in which autologous or allogeneic T cells are engineered to express a CAR targeting a membrane antigen. In Europe, tisagenlecleucel (Kymriah™) is approved for the treatment of refractory/relapsed acute lymphoblastic leukemia in children and young adults as well as relapsed/refractory diffuse large B-cell lymphoma, while axicabtagene ciloleucel (Yescarta™) is approved for the treatment of relapsed/refractory high-grade B-cell lymphoma and primary mediastinal B-cell lymphoma. Both agents are genetically engineered autologous T cells targeting CD19. These practical recommendations, prepared under the auspices of the European Society of Blood and Marrow Transplantation, relate to patient care and supply chain management under the following headings: patient eligibility, screening laboratory tests and imaging and work-up prior to leukapheresis, how to perform leukapheresis, bridging therapy, lymphodepleting conditioning, product receipt and thawing, infusion of CAR T cells, short-term complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, antibiotic prophylaxis, medium-term complications including cytopenias and B-cell aplasia, nursing and psychological support for patients, long-term follow-up, post-authorization safety surveillance, and regulatory issues. These recommendations are not prescriptive and are intended as guidance in the use of this novel therapeutic class.