Refine
Year of publication
Document Type
- Working Paper (16)
- Report (2)
Language
- English (18)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- General Equilibrium (7)
- Asset Pricing (4)
- Contagion (4)
- stochastic volatility (4)
- Asset Allocation (3)
- Recursive Preferences (3)
- Discretization Error (2)
- Hedging (2)
- Model Error (2)
- Stochastic Volatility (2)
Stocks are exposed to the risk of sudden downward jumps. Additionally, a crash in one stock (or index) can increase the risk of crashes in other stocks (or indices). Our paper explicitly takes this contagion risk into account and studies its impact on the portfolio decision of a CRRA investor both in complete and in incomplete market settings. We find that the investor significantly adjusts his portfolio when contagion is more likely to occur. Capturing the time dimension of contagion, i.e. the time span between jumps in two stocks or stock indices, is thus of first-order importance when analyzing portfolio decisions. Investors ignoring contagion completely or accounting for contagion while ignoring its time dimension suffer large and economically significant utility losses. These losses are larger in complete than in incomplete markets, and the investor might be better off if he does not trade derivatives. Furthermore, we emphasize that the risk of contagion has a crucial impact on investors' security demands, since it reduces their ability to diversify their portfolios.
Tractable hedging - an implementation of robust hedging strategies : [This Version: March 30, 2004]
(2004)
This paper provides a theoretical and numerical analysis of robust hedging strategies in diffusion–type models including stochastic volatility models. A robust hedging strategy avoids any losses as long as the realised volatility stays within a given interval. We focus on the effects of restricting the set of admissible strategies to tractable strategies which are defined as the sum over Gaussian strategies. Although a trivial Gaussian hedge is either not robust or prohibitively expensive, this is not the case for the cheapest tractable robust hedge which consists of two Gaussian hedges for one long and one short position in convex claims which have to be chosen optimally.
This paper compares two classes of models that allow for additional channels of correlation between asset returns: regime switching models with jumps and models with contagious jumps. Both classes of models involve a hidden Markov chain that captures good and bad economic states. The distinctive feature of a model with contagious jumps is that large negative returns and unobservable transitions of the economy into a bad state can occur simultaneously. We show that in this framework the filtered loss intensities have dynamics similar to self-exciting processes. Besides, we study the impact of unobservable contagious jumps on optimal portfolio strategies and filtering.
We consider the continuous-time portfolio optimization problem of an investor with constant relative risk aversion who maximizes expected utility of terminal wealth. The risky asset follows a jump-diffusion model with a diffusion state variable. We propose an approximation method that replaces the jumps by a diffusion and solve the resulting problem analytically. Furthermore, we provide explicit bounds on the true optimal strategy and the relative wealth equivalent loss that do not rely on results from the true model. We apply our method to a calibrated affine model and fine that relative wealth equivalent losses are below 1.16% if the jump size is stochastic and below 1% if the jump size is constant and γ ≥ 5. We perform robustness checks for various levels of risk-aversion, expected jump size, and jump intensity.
We study the effects of market incompleteness on speculation, investor survival, and asset pricing moments, when investors disagree about the likelihood of jumps and have recursive preferences. We consider two models. In a model with jumps in aggregate consumption, incompleteness barely matters, since the consumption claim resembles an insurance product against jump risk and effectively reproduces approximate spanning. In a long-run risk model with jumps in the long-run growth rate, market incompleteness affects speculation, and investor survival. Jump and diffusive risks are more balanced regarding their importance and, therefore, the consumption claim cannot reproduce approximate spanning.
We propose a long-run risk model with stochastic volatility, a time-varying mean reversion level of volatility, and jumps in the state variables. The special feature of our model is that the jump intensity is not affine in the conditional variance but driven by a separate process. We show that this separation of jump risk from volatility risk is needed to match the empirically weak link between the level and the slope of the implied volatility smile for S&P 500 options.
This paper analyzes the equilibrium pricing implications of contagion risk in a Lucas-tree economy with recursive preferences and jumps. We introduce a new economic channel allowing for the possibility that endowment shocks simultaneously trigger a regime shift to a bad economic state. We document that these contagious jumps have far-reaching asset pricing implications. The risk premium for such shocks is superadditive, i.e. it is 2.5\% larger than the sum of the risk premia for pure endowment shocks and regime switches. Moreover, contagion risk reduces the risk-free rate by around 0.5\%. We also derive semiclosed-form solutions for the wealth-consumption ratio and the price-dividend ratios in an economy with two Lucas trees and analyze cross-sectional effects of contagion risk qualitatively. We find that heterogeneity among the assets with respect to contagion risk can increase risk premia disproportionately. In particular, big assets with a large exposure to contagious shocks carry significantly higher risk premia.
n this paper we analyze an economy with two heterogeneous investors who both exhibit misspecified filtering models for the unobservable expected growth rate of the aggregated dividend. A key result of our analysis with respect to long-run investor survival is that there are degrees of model misspecification on the part of one investor for which there is no compensation by the other investor's deficiency. The main finding with respect to the asset pricing properties of our model is that the two dimensions of asset pricing and survival are basically independent. In scenarios when the investors are more similar with respect to their expected consumption shares, return volatilities can nevertheless be higher than in cases when they are very different.
We analyze the implications of the structure of a network for asset prices in a general equilibrium model. Networks are represented via self- and mutually exciting jump processes, and the representative agent has Epstein-Zin preferences. Our approach provides a exible and tractable unifying foundation for asset pricing in networks. The model endogenously generates results in accordance with, e.g., the robust-yetfragile feature of financial networks shown in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014) and the positive centrality premium documented in Ahern (2013). We also show that models with simpler preference assumptions cannot generate all these findings simultaneously.
This paper provides an in-depth analysis of the properties of popular tests for the existence and the sign of the market price of volatility risk. These tests are frequently based on the fact that for some option pricing models under continuous hedging the sign of the market price of volatility risk coincides with the sign of the mean hedging error. Empirically, however, these tests suffer from both discretization error and model mis-specification. We show that these two problems may cause the test to be either no longer able to detect additional priced risk factors or to be unable to identify the sign of their market prices of risk correctly. Our analysis is performed for the model of Black and Scholes (1973) (BS) and the stochastic volatility (SV) model of Heston (1993). In the model of BS, the expected hedging error for a discrete hedge is positive, leading to the wrong conclusion that the stock is not the only priced risk factor. In the model of Heston, the expected hedging error for a hedge in discrete time is positive when the true market price of volatility risk is zero, leading to the wrong conclusion that the market price of volatility risk is positive. If we further introduce model mis-specification by using the BS delta in a Heston world we find that the mean hedging error also depends on the slope of the implied volatility curve and on the equity risk premium. Under parameter scenarios which are similar to those reported in many empirical studies the test statistics tend to be biased upwards. The test often does not detect negative volatility risk premia, or it signals a positive risk premium when it is truly zero. The properties of this test furthermore strongly depend on the location of current volatility relative to its long-term mean, and on the degree of moneyness of the option. As a consequence tests reported in the literature may suffer from the problem that in a time-series framework the researcher cannot draw the hedging errors from the same distribution repeatedly. This implies that there is no guarantee that the empirically computed t-statistic has the assumed distribution. JEL: G12, G13 Keywords: Stochastic Volatility, Volatility Risk Premium, Discretization Error, Model Error