Refine
Language
- English (61)
Has Fulltext
- yes (61)
Is part of the Bibliography
- no (61)
Keywords
- BESIII (4)
- Absolute branching fraction (1)
- Branching fractions (1)
- Charmed baryon (1)
- Covariance matrix (1)
- Cross section (1)
- D meson (1)
- Electromagnetic form factor (1)
- Hadronic cross section (1)
- Hadronic decays (1)
Institute
- Physik (61)
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic 𝐷0(+) decays to exclusive final states with an 𝜂, e.g., 𝐷0→𝐾−𝜋+𝜂, 𝐾0𝑆𝜋0𝜂, 𝐾+𝐾−𝜂, 𝐾0𝑆𝐾0𝑆𝜂, 𝐾−𝜋+𝜋0𝜂, 𝐾0𝑆𝜋+𝜋−𝜂, 𝐾0𝑆𝜋0𝜋0𝜂, and 𝜋+𝜋−𝜋0𝜂; 𝐷+→𝐾0𝑆𝜋+𝜂, 𝐾0𝑆𝐾+𝜂, 𝐾−𝜋+𝜋+𝜂, 𝐾0𝑆𝜋+𝜋0𝜂, 𝜋+𝜋+𝜋−𝜂, and 𝜋+𝜋0𝜋0𝜂. Among these decays, the 𝐷0→𝐾−𝜋+𝜂 and 𝐷+→𝐾0 𝑆𝜋+𝜂 decays have the largest branching fractions, which are ℬ(𝐷0→𝐾−𝜋+𝜂) = (1.853±0.025stat±0.031syst)% and ℬ(𝐷+→𝐾0𝑆𝜋+𝜂) = (1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
We report the first observation of the semimuonic decay 𝐷+→𝜔𝜇+𝜈𝜇 using an 𝑒+𝑒− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at a center-of-mass energy of 3.773 GeV. The absolute branching fraction of the 𝐷+→𝜔𝜇+𝜈𝜇 decay is measured to be ℬ𝐷+→𝜔𝜇+𝜈𝜇=(17.7±1.8stat±1.1syst)×10−4. Its ratio with the world average value of the branching fraction of the 𝐷+→𝜔𝑒+𝜈𝑒 decay probes lepton flavor universality and it is determined to be ℬ𝐷+→𝜔𝜇+𝜈𝜇/ℬPDG 𝐷+→𝜔𝑒+𝜈𝑒=1.05±0.14, in agreement with the standard model expectation within one standard deviation.
Cross sections of the process 𝑒+𝑒−→𝜋0𝜋0𝐽/𝜓 at center-of-mass energies between 3.808 and 4.600 GeV are measured with high precision by using 12.4 fb−1 of data samples collected with the BESIII detector operating at the BEPCII collider facility. A fit to the measured energy-dependent cross sections confirms the existence of the charmoniumlike state 𝑌(4220). The mass and width of the 𝑌(4220) are determined to be (4220.4±2.4±2.3) MeV/𝑐2 and (46.2±4.7±2.1) MeV, respectively, where the first uncertainties are statistical and the second systematic. The mass and width are consistent with those measured in the process 𝑒+𝑒−→𝜋+𝜋−𝐽/𝜓. The neutral charmonium-like state 𝑍𝑐(3900)0 is observed prominently in the 𝜋0𝐽/𝜓 invariant-mass spectrum, and, for the first time, an amplitude analysis is performed to study its properties. The spin-parity of 𝑍𝑐(3900)0 is determined to be 𝐽𝑃=1+, and the pole position is (3893.1±2.2±3.0)−𝑖(22.2±2.6±7.0) MeV/𝑐2, which is consistent with previous studies of electrically charged 𝑍𝑐(3900)±. In addition, cross sections of 𝑒+𝑒− → 𝜋0𝑍𝑐(3900)0 → 𝜋0𝜋0𝐽/𝜓 are extracted, and the corresponding line shape is found to agree with that of the 𝑌(4220).
Using 2.93 fb−1 of 𝑒+𝑒− collision data collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, the first observation of the doubly Cabibbo-suppressed decay 𝐷+→𝐾+𝜋+𝜋−𝜋0 is reported. After removing decays that contain narrow intermediate resonances, including 𝐷+→𝐾+𝜂, 𝐷+→𝐾+𝜔, and 𝐷+→𝐾+𝜙, the branching fraction of the decay 𝐷+→𝐾+𝜋+𝜋−𝜋0 is measured to be (1.13±0.08stat±0.03syst)×10−3. The ratio of branching fractions of 𝐷+→𝐾+𝜋+𝜋−𝜋0 over 𝐷+→𝐾−𝜋+𝜋+𝜋0 is found to be (1.81±0.15)%, which corresponds to (6.28±0.52)tan4𝜃𝐶, where 𝜃𝐶 is the Cabibbo mixing angle. This ratio is significantly larger than the corresponding ratios for other doubly Cabibbo-suppressed decays. The asymmetry of the branching fractions of charge-conjugated decays 𝐷±→𝐾±𝜋±𝜋∓𝜋0 is also determined, and no evidence for 𝐶𝑃 violation is found. In addition, the first evidence for the 𝐷+→𝐾+𝜔 decay, with a statistical significance of 3.3𝜎, is presented and the branching fraction is measured to be ℬ(𝐷+→𝐾+𝜔) = (5.7+2.5−2.1stat±0.2syst)×10−5.
Ten hadronic final states of the ℎ𝑐 decays are investigated via the process 𝜓(3686)→𝜋0ℎ𝑐, using a data sample of (448.1±2.9)×106 𝜓(3686) events collected with the BESIII detector. The decay channel ℎ𝑐→𝐾+𝐾−𝜋+𝜋−𝜋0 is observed for the first time and has a measured significance of 6.0𝜎. The corresponding branching fraction is determined to be ℬ(ℎ𝑐→𝐾+𝐾−𝜋+𝜋−𝜋0)=(3.3±0.6±0.6)×10−3 (where the uncertainties are statistical and systematic, respectively). Evidence for the decays ℎ𝑐→𝜋+𝜋−𝜋0𝜂 and ℎ𝑐→𝐾0𝑆𝐾±𝜋∓𝜋+𝜋− is found with a significance of 3.6𝜎 and 3.8𝜎, respectively. The corresponding branching fractions (and upper limits) are obtained to be ℬ(ℎ𝑐→𝜋+𝜋−𝜋0𝜂)=(7.2±1.8±1.3)×10−3 (<1.8×10−2) and ℬ(ℎ𝑐→𝐾0𝑆𝐾±𝜋∓𝜋+𝜋−)=(2.8±0.9±0.5)×10−3 (<4.7×10−3). Upper limits on the branching fractions for the final states ℎ𝑐→𝐾+𝐾−𝜋0, 𝐾+𝐾−𝜂, 𝐾+𝐾−𝜋+𝜋−𝜂, 2(𝐾+𝐾−)𝜋0, 𝐾+𝐾−𝜋0𝜂, 𝐾0𝑆𝐾±𝜋∓, and 𝑝¯𝑝𝜋0𝜋0 are determined at a confidence level of 90%.
Using a sample of 106 million 𝜓(3686) decays, 𝜓(3686)→𝛾𝜒𝑐𝐽(𝐽=0,1,2) and 𝜓(3686)→𝛾𝜒𝑐𝐽,𝜒𝑐𝐽→𝛾𝐽/𝜓(𝐽=1,2) events are utilized to study inclusive 𝜒𝑐𝐽→anything, 𝜒𝑐𝐽→hadrons, and 𝐽/𝜓→anything distributions, including distributions of the number of charged tracks, electromagnetic calorimeter showers, and 𝜋0s, and to compare them with distributions obtained from the BESIII Monte Carlo simulation. Information from each Monte Carlo simulated decay event is used to construct matrices connecting the detected distributions to the input predetection “produced” distributions. Assuming these matrices also apply to data, they are used to predict the analogous produced distributions of the decay events. Using these, the charged particle multiplicities are compared with results from MARK I. Further, comparison of the distributions of the number of photons in data with those in Monte Carlo simulation indicates that G-parity conservation should be taken into consideration in the simulation.
We report an amplitude analysis and branching fraction measurement of D+s→K+K−π+ decay using a data sample of 3.19 fb−1 recorded with BESIII detector at a center-of-mass energy of 4.178 GeV.
We perform a model-independent partial wave analysis in the low K+K− mass region to determine the K+K− S-wave lineshape, followed by an amplitude analysis of our very pure high-statistics sample.
The amplitude analysis provides an accurate determination of the detection efficiency allowing us to measure the branching fraction B(D+s→K+K−π+)=(5.47±0.08stat±0.13sys)%.
Using 2.93 fb−1 of 𝑒+𝑒− annihilation data collected at a center-of-mass energy √𝑠=3.773 GeV with the BESIII detector operating at the BEPCII collider, we search for the semileptonic 𝐷0(+) decays into a 𝑏1(1235)−(0) axial-vector meson for the first time. No significant signal is observed for either charge combination. The upper limits on the product branching fractions are ℬ𝐷0→𝑏1(1235)−𝑒+𝜈𝑒·ℬ𝑏1(1235) −→ 𝜔𝜋−<1.12×10−4 and ℬ𝐷+→𝑏1(1235)0𝑒+𝜈𝑒·ℬ𝑏1(1235)0→𝜔𝜋0<1.75×10−4 at the 90% confidence level.
We search for the process e+e−→π+π−χcJ (J=0,1,2) and for a charged charmonium-like state in the π±χcJ subsystem. The search uses data sets collected with the BESIII detector at the BEPCII storage ring at center-of-mass energies between 4.18 GeV and 4.60 GeV. No significant π+π−χcJ signals are observed at any center-of-mass energy, and thus upper limits are provided which also serve as limits for a possible charmonium-like structure in the invariant π±χcJ mass.
Observation of a near-threshold structure in the K⁺ recoil-mass spectra in e⁺e⁻ → K⁺(Dₛ⁻D*⁰+Dₛ*⁻D⁰)
(2021)
We report a study of the processes of 𝑒+𝑒−→𝐾+𝐷−𝑠𝐷*0 and 𝐾+𝐷*−𝑠𝐷0 based on 𝑒+𝑒− annihilation samples collected with the BESIII detector operating at BEPCII at five center-of-mass energies ranging from 4.628 to 4.698 GeV with a total integrated luminosity of 3.7 fb−1. An excess of events over the known contributions of the conventional charmed mesons is observed near the 𝐷−𝑠𝐷*0 and 𝐷*−𝑠𝐷0 mass thresholds in the 𝐾+ recoil-mass spectrum for events collected at √𝑠=4.681 GeV. The structure matches a mass-dependent-width Breit-Wigner line shape, whose pole mass and width are determined as (3982.5+1.8
−2.6±2.1) MeV/𝑐2 and (12.8+5.3−4.4±3.0) MeV, respectively. The first uncertainties are statistical and the second are systematic. The significance of the resonance hypothesis is estimated to be 5.3 𝜎 over the contributions only from the conventional charmed mesons. This is the first candidate for a charged hidden-charm tetraquark with strangeness, decaying into 𝐷−𝑠𝐷*0 and 𝐷*−𝑠𝐷0. However, the properties of the excess need further exploration with more statistics.