Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
Radiative transition of an excited baryon to a nucleon with emission of a virtual massive photon converting to dielectron pair (Dalitz decays) provides important information about baryon-photon coupling at low q2 in timelike region. A prominent enhancement in the respective electromagnetic transition Form Factors (etFF) at q2 near vector mesons ρ/ω poles has been predicted by various calculations reflecting strong baryon-vector meson couplings. The understanding of these couplings is also of primary importance for the interpretation of the emissivity of QCD matter studied in heavy ion collisions via dilepton emission. Dedicated measurements of baryon Dalitz decays in proton-proton and pion-proton scattering with HADES detector at GSI/FAIR are presented and discussed. The relevance of these studies for the interpretation of results obtained from heavy ion reactions is elucidated on the example of the HADES results.
We consider a dual representation of an effective three-dimensional Polyakov loop model for the SU(3) theory at nonzero real chemical potential. This representation is free of the sign problem and can be used for numeric Monte-Carlo simulations. These simulations allow us to locate the line of second order phase transitions, that separates the region of first order phase transition from the crossover one. The behavior of local observables in different phases of the model is studied numerically and compared with predictions of the mean-field analysis. Our dual formulation allows us to study also Polyakov loop correlation functions. From these results, we extract the screening masses and compare them with large-N predictions.
The broad class of U(N) and SU(N) Polyakov loop models on the lattice are solved exactly in the combined large N, Nf limit, where N is a number of colors and Nf is a number of quark flavors, and in any dimension. In this ’t Hooft-Veneziano limit the ratio N/Nf is kept fixed. We calculate both the free energy and various correlation functions. The critical behavior of the models is described in details at finite temperatures and non-zero baryon chemical potential. Furthermore, we prove that the calculation of the N-point (baryon) correlation function reduces to the geometric median problem in the confinement phase. In the deconfinement phase we establish an existence of the complex masses and an oscillating decay of correlations in a certain region of parameters.