Refine
Year of publication
Language
- English (79)
Has Fulltext
- yes (79)
Is part of the Bibliography
- no (79)
Keywords
- Diffraction (2)
- Elastic scattering (2)
- Polarization (2)
- RHIC (2)
- Canonical suppression (1)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Cold nuclear matter effects (1)
- Collectivity (1)
- Correlation (1)
Institute
Transverse energy ( ET ) distributions have been measured for Au+Au collisions at sqrt[sNN ]=200 GeV by the STAR Collaboration at RHIC. ET is constructed from its hadronic and electromagnetic components, which have been measured separately. ET production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of ET per charged particle agrees well with measurements at lower collision energy, indicating that the growth in ET for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total ET is consistent with a final state dominated by mesons and independent of centrality.
We present data on e+ e- pair production accompanied by nuclear breakup in ultraperipheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order diagrams for pair production should be enhanced. We compare the data with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED). The data distributions agree with both calculations, except that the pair transverse momentum spectrum disagrees with the equivalent photon approach. We set limits on higher-order contributions to the cross section.
The transverse mass spectra and midrapidity yields for Xi s and Omega s are presented. For the 10% most central collisions, the Xi -bar+/h- ratio increases from the Super Proton Synchrotron to the Relativistic Heavy Ion Collider energies while the Xi -/h- stays approximately constant. A hydrodynamically inspired model fit to the Xi spectra, which assumes a thermalized source, seems to indicate that these multistrange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to pi , K, p, and Lambda s.
We present STAR measurements of charged hadron production as a function of centrality in Au+Au collisions at sqrt[sNN ]=130 GeV . The measurements cover a phase space region of 0.2< pT <6.0 GeV/c in transverse momentum and -1< eta <1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5< | eta | <1 are reported and compared to our previously published results for | eta | <0.5 . No significant difference is seen for inclusive pT distributions of charged hadrons in these two pseudorapidity bins. We measured dN/d eta distributions and truncated mean pT in a region of pT > pcutT , and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured pT region. The relative importance of hard scattering processes is investigated through binary scaling fraction of particle production.
Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sqrt[sNN]=200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+p at the same energy. The elliptic anisotropy v2 is found to reach its maximum at pt~3 GeV/c, then decrease slowly and remain significant up to pt ~ 7-10 GeV/c. Stronger suppression is found in the back-to-back high-pt particle correlations for particles emitted out of plane compared to those emitted in plane. The centrality dependence of v2 at intermediate pt is compared to simple models based on jet quenching.
The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at sqrt[sNN ]=200 GeV are presented. The charged particle density at midrapidity, its pseudorapidity asymmetry, and centrality dependence are reasonably reproduced by a multiphase transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for pT below 5 GeV/c . The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2< pT <6 GeV/c , with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings.
The short-lived K(892)* resonance provides an efficient tool to probe properties of the hot and dense medium produced in relativistic heavy-ion collisions. We report measurements of K* in sqrt[sNN]=200GeV Au+Au and p+p collisions reconstructed via its hadronic decay channels K(892)*0-->K pi and K(892)*±-->K0S pi ± using the STAR detector at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The K*0 mass has been studied as a function of pT in minimum bias p+p and central Au+Au collisions. The K*pT spectra for minimum bias p+p interactions and for Au+Au collisions in different centralities are presented. The K*/K yield ratios for all centralities in Au+Au collisions are found to be significantly lower than the ratio in minimum bias p+p collisions, indicating the importance of hadronic interactions between chemical and kinetic freeze-outs. A significant nonzero K*0 elliptic flow (v2) is observed in Au+Au collisions and is compared to the K0S and Lambda v2. The nuclear modification factor of K* at intermediate pT is similar to that of K0S but different from Lambda . This establishes a baryon-meson effect over a mass effect in the particle production at intermediate pT (2<pT <= 4GeV/c).
Midrapidity open charm spectra from direct reconstruction of D0(D0-bar)-->K± pi ± in d+Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at sqrt[sNN]=200 GeV are reported. The D0(D0-bar) spectrum covers a transverse momentum (pT) range of 0.1<pT<3 GeV/c, whereas the electron spectra cover a range of 1<pT<4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at midrapidity for open charm production from d+Au collisions at BNL RHIC is d sigma NNcc-bar/dy=0.30±0.04(stat)±0.09(syst) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed.
Correlations in the hadron distributions produced in relativistic Au+Au collisions are studied in the discrete wavelet expansion method. The analysis is performed in the space of pseudorapidity (| eta | <= 1) and azimuth(full 2 pi ) in bins of transverse momentum (pt) from 0.14 <= pt <= 2.1GeV/c. In peripheral Au+Au collisions a correlation structure ascribed to minijet fragmentation is observed. It evolves with collision centrality and pt in a way not seen before, which suggests strong dissipation of minijet fragmentation in the longitudinally expanding medium.
The results from the STAR Collaboration on directed flow (v1), elliptic flow (v2), and the fourth harmonic (v4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrt[sNN]=200GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a blast-wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v2, scaling with the number of constituent quarks and parton coalescence are discussed. For v4, scaling with v22 and quark coalescence are discussed.