Refine
Year of publication
- 2021 (3)
Document Type
- Preprint (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
The discovery of the 1144-phase, e.g. CaKFe4As4, creates opportunities to build novel intermetallics with alternative stacking of two parent compounds. Here we formalize the idea by defining a class of bulk crystalline solids with A-B stacking (including 1144-phases and beyond), which is a generalization of hetero-structures from few-layer or thin-film semi-conductors to bulk intermetallics. Theoretically, four families of phosphides \textit{AB}(TM)4P4 (TM=Fe, Ru, Co, Ni) are investigated by first-principles calculations, wherein configurational, vibrational and electronic degrees of freedom are considered. It predicts a variety of stable 1144-phases (especially Ru- and Fe-phosphides). Stability rules are found and structural/electronic properties are discussed. Experimentally, we synthesize high-purity CaKRu4P4 as a proof of principle example. The synthetic method is simple and easily applied. Moreover, it alludes to a strategy to explore complex multi-component compounds, facilitated by a phase diagram coordinated by collective descriptors.
The discovery of the 1144-phase, e.g. CaKFe4As4, creates opportunities to build novel intermetallics with alternative stacking of two parent compounds. Here we formalize the idea and introduce a concept, namely hetero-crystals (HC), to describe a unique class of bulk crystalline solids with such A-B stacking (including 1144-phases and beyond). HC generalizes hetero-structures from few-layer or thin-film semi-conductors to bulk intermetallics. We illustrate the HC concept with the example of 1144-phases. Theoretically, four families of phosphides \textit{AB}(TM)4P4 (TM=Fe, Ru, Co, Ni) are investigated by first-principles calculations, wherein configurational, vibrational and electronic degrees of freedom are considered. It predicts a variety of stable 1144-phases (especially Ru- and Fe-phosphides). Stability rules are found and structural/electronic properties are discussed. Experimentally, we synthesize high-purity CaKRu4P4 as a proof of principle example of such a HC. The synthetic method is simple and can be applied to other HC. Moreover, HC alludes to a new strategy to explore complex multi-component compounds, facilitated by a new phase diagram coordinated by collective descriptors.
The discovery of the 1144-phase, e.g. CaKFe4As4, creates opportunities to build novel intermetallics with alternative stacking of two parent compounds. Here we formalize the idea by defining a class of bulk crystalline solids with A-B stacking (including 1144-phases and beyond), which is a generalization of hetero-structures from few-layer or thin-film semi-conductors to bulk intermetallics. Theoretically, four families of phosphides \textit{AB}(TM)4P4 (TM=Fe, Ru, Co, Ni) are investigated by first-principles calculations, wherein configurational, vibrational and electronic degrees of freedom are considered. It predicts a variety of stable 1144-phases (especially Ru- and Fe-phosphides). Stability rules are found and structural/electronic properties are discussed. Experimentally, we synthesize high-purity CaKRu4P4 as a proof of principle example. The synthetic method is simple and easily applied. Moreover, it alludes to a strategy to explore complex multi-component compounds, facilitated by a phase diagram coordinated by collective descriptors.