Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Stereotactic body radiation therapy (3)
- Brain metastasis (2)
- CyberKnife robotic radiosurgery (2)
- BRAF inhibitors (1)
- Breast cancer (1)
- Cancer treatment (1)
- Clinical trial (1)
- Couch tracking (1)
- CyberKnife (1)
- Delivery quality assurance (1)
Institute
- Medizin (8)
The increasing use of targeted therapy (TT) has resulted in prolonged disease control and survival in many metastatic cancers. In parallel, stereotactic radiotherapy (SRT) is increasingly performed in patients receiving TT to obtain a durable control of resistant metastases, and thereby to prolong the time to disseminated disease progression and switch of systemic therapy. The aims of this study were to analyze the safety and efficacy of SRT combined with TT in metastatic cancer patients and to assess the influence of continuous vs. interrupted TT during metastasis-directed SRT. The data of 454 SRTs in 158 patients from the international multicenter database (TOaSTT) on metastatic cancer patients treated with SRT and concurrent TT (within 30 days) were analyzed using Kaplan–Meier and log rank testing. Toxicity was defined by the CTCAE v4.03 criteria. The median FU was 19.9 mo (range 1–102 mo); 1y OS, PFS and LC were 59%, 24% and 84%, respectively. Median TTS was 25.5 mo (95% CI 11–40). TT was started before SRT in 77% of patients. TT was interrupted during SRT in 44% of patients, with a median interruption of 7 (range 1–42) days. There was no significant difference in OS or PFS whether TT was temporarily interrupted during SRT or not. Any-grade acute and late SRT-related toxicity occurred in 63 (40%) and 52 (33%) patients, respectively. The highest toxicity rates were observed for the combination of SRT and EGFRi or BRAF/MEKi, and any-grade toxicity was significantly increased when EGFRi (p = 0.016) or BRAF/MEKi (p = 0.009) were continued during SRT. Severe (≥grade 3) acute and late SRT-related toxicity were observed in 5 (3%) and 7 (4%) patients, respectively, most frequently in patients treated with EGFRi or BRAF/MEKi and in the intracranial cohort. There was no significant difference in severe toxicity whether TT was interrupted before and after SRT or not. In conclusion, SRT and continuous vs. interrupted TT in metastatic cancer patients did not influence OS or PFS. Overall, severe toxicity of combined treatment was rare; a potentially increased toxicity after SRT and continuous treatment with EGFR inhibitors or BRAF(±MEK) inhibitors requires further evaluation.
BACKGROUND: We retrospectively evaluated the efficacy and toxicity of gross tumor volume (GTV) mean-dose-optimized and real-time motion-compensated robotic stereotactic body radiation therapy (SBRT) in the treatment of liver metastases.
METHODS: Between March 2011 and July 2015, 52 patients were treated with SBRT for a total of 91 liver metastases (one to four metastases per patient) with a median GTV volume of 12 cc (min 1 cc, max 372 cc). The optimization of mean GTV dose was prioritized during treatment planning at the potential cost of planning target volume (PTV) coverage reduction while adhering to safe normal tissue constraints. The delivered median GTV biological effective dose (BED10) was 142.1 Gy10 (range, 60.2 Gy10 -165.3 Gy10) and the prescribed PTV BED10 ranged from 40.6 Gy10 to 112.5 Gy10 (median, 86.1 Gy10). We analyzed local control (LC), progression-free interval (PFI), overall survival (OS), and toxicity.
RESULTS: Median follow-up was 17 months (range, 2-49 months). The 2-year actuarial LC, PFI, and OS rates were 82.1, 17.7, and 45.0 %, and the median PFI and OS were 9 and 23 months, respectively. In univariate analysis histology (p < 0.001), PTV prescription BED10 (HR 0.95, CI 0.91-0.98, p = 0.002) and GTV mean BED10 (HR 0.975, CI 0.954-0.996, p = 0.011) were predictive for LC. Multivariate analysis showed that only extrahepatic disease status at time of treatment was a significant factor (p = 0.033 and p = 0.009, respectively) for PFI and OS. Acute nausea or fatigue grade 1 was observed in 24.1 % of the patients and only 1 patient (1.9 %) had a side effect of grade ≥ 2.
CONCLUSIONS: Robotic real-time motion-compensated SBRT is a safe and effective treatment for one to four liver metastases. Reducing the PTV prescription dose and keeping a high mean GTV dose allowed the reduction of toxicity while maintaining a high local control probability for the treated lesions.
Purpose: High precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans.
Methods and material: Preliminary evaluation consisted of beam profile validation and analysis of source–detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference ⩽ 2%, distance-to-agreement ⩽ 2 mm, pass-rate ⩾ 90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1 mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions.
Results: The 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10 cm source–detector-distance change, but remains within 1% for the clinically relevant source–detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1 mm distance-to-agreement criterion while 2 mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria.
Conclusion: We demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source–detector-distance response.
Purpose: Scientific and clinical achievements in radiation, medical, and surgical oncology are changing the landscape of interdisciplinary oncology. The German Society for Radiation Oncology (DEGRO) working group of young clinicians and scientists (yDEGRO) and the DEGRO representation of associate and full professors (AKRO) are aware of the essential role of radiation oncology in multidisciplinary treatment approaches. Together, yDEGRO and AKRO endorsed developing a German radiotherapy & radiation oncology vision 2030 to address future challenges in patient care, research, and education. The vision 2030 aims to identify priorities and goals for the next decade in the field of radiation oncology. Methods: The vision development comprised three phases. During the first phase, areas of interest, objectives, and the process of vision development were defined jointly by the yDEGRO, AKRO, and the DEGRO board. In the second phase, a one-day strategy retreat was held to develop AKRO and yDEGRO representatives’ final vision from medicine, biology, and physics. The third phase was dedicated to vision interpretation and program development by yDEGRO representatives. Results: The strategy retreat’s development process resulted in conception of the final vision “Innovative radiation oncology Together – Precise, Personalized, Human.” The first term “Innovative radiation oncology” comprises the promotion of preclinical research and clinical trials and highlights the development of a national committee for strategic development in radiation oncology research. The term “together” underpins collaborations within radiation oncology departments as well as with other partners in the clinical and scientific setting. “Precise” mainly covers technological precision in radiotherapy as well as targeted oncologic therapeutics. “Personalized” emphasizes biology-directed individualization of radiation treatment. Finally, “Human” underlines the patient-centered approach and points towards the need for individual longer-term career curricula for clinicians and researchers in the field. Conclusion: The vision 2030 balances the ambition of physical, technological, and biological innovation as well as a comprehensive, patient-centered, and collaborative approach towards radiotherapy & radiation oncology in Germany.
Background: For prostate cancer treatment, treatment options with minimal side effects are desired. External beam radiation therapy (EBRT) is non-invasive, standard of care and delivered in either conventional fractionation over 8 weeks or with moderate hypo-fractionation over about 5 weeks. Recent advances in radiotherapy technology have made extreme hypo-fractionated stereotactic body radiation therapy (SBRT) of prostate cancer feasible, which has not yet been introduced as a standard treatment method in Germany. Initial results from other countries are promising, but long-term results are not yet available. The aim of this study is to investigate feasibility and effectiveness of SBRT for prostate cancer in Germany.
Methods/design: This German bi-center single group trial (HYPOSTAT) is designed to evaluate feasibility and effectiveness, as measured by toxicity and PSA-response, respectively, of an extreme hypo-fractionated SBRT regimen with five fractions of 7 Gy in treatment of localized low and intermediate risk prostate cancer. The target volume includes the prostate with or without the base of seminal vesicles depending on risk stratification and uncertainty margins that are kept at 3–5 mm. SBRT treatment is delivered with the robotic CyberKnife system, which was recently introduced in Germany. Acute and late toxicity after one year will be evaluated according to Common Terminology Criteria for Adverse Events (CTCAE v. 4.0), Radiation Therapy Oncology Group (RTOG) and International Prostate Symptom Score (IPSS) Scores. The quality of life will be assessed before and after treatment with the EORTC QLQ C30 questionnaire. Hypothesizing that the proportion of patients with grade 2 side effects or higher is less or equal than 2.8%, thus markedly lower than the standard EBRT percentage (17.5%), the recruitment target is 85 patients.
Discussion: The HYPOSTAT trial aims at demonstrating short term feasibility of extreme hypo-fractioned SBRT for the treatment of prostate cancer and might be used as the pilot study for a multi-center multi-platform or for randomized-controlled trials comparing conventional radiotherapy with SBRT for localized prostate cancer in the future. The study concept of patient enrollment, follow up and evaluation by multiple public university clinics and actual patient treatment in dedicated private radiosurgery practices with high-tech radiation equipment is unique for clinical trials.
Study status: The study is ongoing and currently recruiting patients.
Trial registration: Registration number: NCT02635256 (clinicaltrials.gov). Registered 8 December 2015
Purpose: A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion.
Methods and materials: Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded.
Results: For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2 mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p < 0.001). For all prostate the mean 2%/2 mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p < 0.001). The difference between the four systems was small with an average 2%/2 mm γ-fail rate of <3% for all systems with adaptation for lung and prostate.
Conclusions: The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.
Purpose: Stereotactic radiosurgery (SRS) is an established primary treatment for newly diagnosed brain metastases with high local control rates. However, data about local re-irradiation in case of local failure after SRS (re-SRS) are rare. We evaluated the feasibility, efficacy and patient selection characteristics in treating locally recurrent metastases with a second course of SRS.
Methods: We retrospectively evaluated patients with brain metastases treated with re-SRS for local tumor progression between 2011 and 2017. Patient and treatment characteristics as well as rates of tumor control, survival and toxicity were analyzed.
Results: Overall, 32 locally recurrent brain metastases in 31 patients were irradiated with re-SRS. Median age at re-SRS was 64.9 years. The primary histology was breast cancer and non-small-cellular lung cancer (NSCLC) in respectively 10 cases (31.3%), in 5 cases malignant melanoma (15.6%). In the first SRS-course 19 metastases (59.4%) and in the re-SRS-course 29 metastases (90.6%) were treated with CyberKnife® and the others with Gamma Knife. Median planning target volume (PTV) for re-SRS was 2.5 cm3 (range, 0.1–37.5 cm3) and median dose prescribed to the PTV was 19 Gy (range, 12–28 Gy) in 1–5 fractions to the median 69% isodose (range, 53–80%). The 1-year overall survival rate was 61.7% and the 1-year local control rate was 79.5%. The overall rate of radiological radio-necrosis was 16.1% and four patients (12.9%) experienced grade ≥ 3 toxicities.
Conclusions: A second course of SRS for locally recurrent brain metastases after prior local SRS appears to be feasible with acceptable toxicity and can be considered as salvage treatment option for selected patients with high performance status. Furthermore, this is the first study utilizing robotic radiosurgery for this indication, as an additional option for frameless fractionated treatment.
Introduction: Combination therapy for melanoma brain metastases (MM) using stereotactic radiosurgery (SRS) and immune checkpoint-inhibition (ICI) or targeted therapy (TT) is currently of high interest. In this collective, time evolution and incidence of imaging findings indicative of pseudoprogression is sparsely researched. We therefore investigated time-course of MRI characteristics in these patients.
Methods: Data were obtained retrospectively from 27 patients (12 female, 15 male; mean 61 years, total of 169 MMs). Single lesion volumes, total MM burden and edema volumes were analyzed at baseline and follow-up MRIs in 2 months intervals after SRS up to 24 months. The occurrence of intralesional hemorrhages was recorded.
Results: 17 patients (80 MM) received ICI, 8 (62 MM) TT and 2 (27 MM) ICI + TT concomitantly to SRS. MM-localization was frontal (n = 89), temporal (n = 23), parietal (n = 20), occipital (n = 10), basal ganglia/thalamus/insula (n = 10) and cerebellar (n = 10). A volumetric progression of MM 2–4 months after SRS was observed in combined treatment with ICI (p = 0.028) and ICI + TT (p = 0.043), whereas MMs treated with TT showed an early volumetric regression (p = 0.004). Edema volumes moderately correlated with total MM volumes (r = 0.57; p < 0.0001). Volumetric behavior did not differ significantly over time regarding lesions’ initial sizes or localizations. No significant differences between groups were observed regarding rates of post-SRS intralesional hemorrhages.
Conclusion: Reversible volumetric increases in terms of pseudoprogression are observed 2–4 months after SRS in patients with MM concomitantly treated with ICI and ICI + TT, rarely after TT. Edema volumes mirror total MM volumes. Medical treatment type does not significantly affect rates of intralesional hemorrhage.