Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Stroke (2)
- ASPECTS (1)
- Critical care and emergency medicine (1)
- Dysphagia (1)
- Neural networks (1)
- Nurses (1)
- Physicians (1)
- Pneumonia (1)
- Radiology and imaging (1)
- Simulation and modeling (1)
Institute
- Medizin (4)
- MPI für Hirnforschung (1)
Ischemic lesion location based on the ASPECT score for risk assessment of neurogenic dysphagia
(2020)
Dysphagia is common in patients with middle cerebral artery (MCA) infarctions and associated with malnutrition, pneumonia, and mortality. Besides bedside screening tools, brain imaging findings may help to timely identify patients with swallowing disorders. We investigated whether the Alberta stroke program early CT score (ASPECTS) allows for the correlation of distinct ischemic lesion patterns with dysphagia. We prospectively examined 113 consecutive patients with acute MCA infarctions. Fiberoptic endoscopic evaluation of swallowing (FEES) was performed within 24 h after admission for validation of dysphagia. Brain imaging (CT or MRI) was rated for ischemic changes according to the ASPECT score. 62 patients (54.9%) had FEES-proven dysphagia. In left hemispheric strokes, the strongest associations between the ASPECTS sectors and dysphagia were found for the lentiform nucleus (odds ratio 0.113 [CI 0.028–0.433; p = 0.001), the insula (0.275 [0.102–0.742]; p = 0.011), and the frontal operculum (0.280 [CI 0.094–0.834]; p = 0.022). A combination of two or even all three of these sectors together increased relative dysphagia frequency up to 100%. For right hemispheric strokes, only non-significant associations were found which were strongest for the insula region. The distribution of early ischemic changes in the MCA territory according to ASPECTS may be used as risk indicator of neurogenic dysphagia in MCA infarction, particularly when the left hemisphere is affected. However, due to the exploratory nature of this research, external validation studies of these findings are warranted in future.
Background: To meet the requirements imposed by the time-dependency of acute stroke therapies, it is necessary 1) to initiate structural and cultural changes in the breadth of stroke-ready hospitals and 2) to find new ways to train the personnel treating patients with acute stroke. We aimed to implement and validate a composite intervention of a stroke team algorithm and simulation-based stroke team training as an effective quality initiative in our regional interdisciplinary neurovascular network consisting of 7 stroke units.
Methods: We recorded door-to-needle times of all consecutive stroke patients receiving thrombolysis at seven stroke units for 3 months before and after a 2 month intervention which included setting up a team-based stroke workflow at each stroke unit, a train-the-trainer seminar for stroke team simulation training and a stroke team simulation training session at each hospital as well as a recommendation to take up regular stroke team trainings.
Results: The intervention reduced the network-wide median door-to-needle time by 12 minutes from 43,0 (IQR 29,8–60,0, n = 122) to 31,0 (IQR 24,0–42,0, n = 112) minutes (p < 0.001) and substantially increased the share of patients receiving thrombolysis within 30 minutes of hospital arrival from 41.5% to 59.6% (p < 0.001). Stroke team training participants stated a significant increase in knowledge on the topic of acute stroke care and in the perception of patient safety. The overall course concept was regarded as highly useful by most participants from different professional backgrounds.
Conclusions: The composite intervention of a binding team-based algorithm and stroke team simulation training showed to be well-transferable in our regional stroke network. We provide suggestions and materials for similar campaigns in other stroke networks.
Purpose: Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2’-values in these patients we evaluated the relationship between T2’-values and CBV in patients with unilateral high-grade large-artery stenosis.
Materials and Methods Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2’-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2’ with different degrees of perfusion delay and compared to corresponding contralateral areas.
Results: No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2’-values. In contrast, rCBV was significantly decreased (p<0.05) in regions with severe perfusion delay and decreased T2’. Furthermore, no significant correlation between T2’- and rCBV-values was found. Conclusions rCBV is not significantly increased in areas of decreased T2’ and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2’ should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2’-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease.
Oxygenation-sensitive spin relaxation time T2′ and relaxation rate R2′ (1/T2′) are presumed to be markers of the cerebral oxygen extraction fraction (OEF) in acute ischemic stroke. In this study, we investigate the relationship of T2′/R2′ with dynamic susceptibility contrast-based relative cerebral blood flow (rCBF) in acute ischemic stroke to assess their plausibility as surrogate markers of the ischemic penumbra. Twenty-one consecutive patients with internal carotid artery and/or middle cerebral artery occlusion were studied at 3.0 T. A physiological model of the cerebral vasculature (VM) was used to process PWI raw data in addition to a conventional deconvolution technique. T2′, R2′, and rCBF values were extracted from the ischemic core and hypoperfused areas. Within hypoperfused tissue, no correlation was found between deconvolved rCBF and T2′ (r = −0.05, p = 0.788), or R2′ (r = 0.039, p = 0.836). In contrast, we found a strong positive correlation with T2′ (r = 0.444, p = 0.006) and negative correlation with R2′ (r = −0.494, p = 0.0025) for rCBFVM, indicating increasing OEF with decreasing CBF and that rCBF based on the vascular model may be more closely related to metabolic disturbances. Further research to refine and validate these techniques may enable their use as MRI-based surrogate markers of the ischemic penumbra for selecting stroke patients for interventional treatment strategies.