Refine
Year of publication
Document Type
- Article (14)
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- BCR/ABL (3)
- Allosteric inhibition (2)
- Philadelphia chromosome (2)
- Abl kinase inhibitors (1)
- Acute myeloid leukaemia (1)
- Azacitidine (1)
- BCL2 (1)
- BCR-ABL (1)
- BCR-ABL1 (1)
- BEZ235 (1)
Institute
- Medizin (14)
Resistance remains the major clinical challenge for the therapy of Philadelphia chromosome–positive (Ph+) leukemia. With the exception of ponatinib, all approved tyrosine kinase inhibitors (TKIs) are unable to inhibit the common “gatekeeper” mutation T315I. Here we investigated the therapeutic potential of crizotinib, a TKI approved for targeting ALK and ROS1 in non-small cell lung cancer patients, which inhibited also the ABL1 kinase in cell-free systems, for the treatment of advanced and therapy-resistant Ph+ leukemia. By inhibiting the BCR-ABL1 kinase, crizotinib efficiently suppressed growth of Ph+ cells without affecting growth of Ph− cells. It was also active in Ph+ patient-derived long-term cultures (PD-LTCs) independently of the responsiveness/resistance to other TKIs. The efficacy of crizotinib was confirmed in vivo in syngeneic mouse models of BCR-ABL1- or BCR-ABL1T315I-driven chronic myeloid leukemia–like disease and in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). Although crizotinib binds to the ATP-binding site, it also allosterically affected the myristol binding pocket, the binding site of GNF2 and asciminib (former ABL001). Therefore, crizotinib has a seemingly unique double mechanism of action, on the ATP-binding site and on the myristoylation binding pocket. These findings strongly suggest the clinical evaluation of crizotinib for the treatment of advanced and therapy-resistant Ph+ leukemia.
Maintenance therapy after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) is conceptually attractive to prevent relapse, but has been hampered by the limited number of suitable anti-leukemic agents. The deacetylase inhibitor (DACi) panobinostat demonstrated moderate anti-leukemic activity in a small subset of patients with advanced AML and high-risk MDS in phase I/II trials.1, 2 It also displays immunomodulatory activity3 that may enhance leukemia-specific cytotoxicity4 and mitigate graft versus host disease (GvHD), but conversely could impair T- and NK cell function.5, 6 We conducted this open-label, multi-center phase I/II trial (NCT01451268) to assess the feasibility and preliminary efficacy of prolonged prophylactic administration of panobinostat after HSCT for AML or MDS. The study protocol was approved by an independent ethics committee and conducted in compliance with the Declaration of Helsinki. All patients provided written informed consent. ...
Despite advances in allogeneic stem cell transplantation, BCR-ABL-positive acute lymphoblastic leukaemia (ALL) remains a high-risk disease, necessitating the development of novel treatment strategies. As the known oncomir, miR-17~92, is regulated by BCR-ABL fusion in chronic myeloid leukaemia, we investigated its role in BCR-ABL translocated ALL. miR-17~92-encoded miRNAs were significantly less abundant in BCR-ABL-positive as compared to -negative ALL-cells and overexpression of miR-17~19b triggered apoptosis in a BCR-ABL-dependent manner. Stable isotope labelling of amino acids in culture (SILAC) followed by liquid chromatography and mass spectroscopy (LC-MS) identified several apoptosis-related proteins including Bcl2 as potential targets of miR-17~19b. We validated Bcl2 as a direct target of this miRNA cluster in mice and humans, and, similar to miR-17~19b overexpression, Bcl2-specific RNAi strongly induced apoptosis in BCR-ABL-positive cells. Furthermore, BCR-ABL-positive human ALL cell lines were more sensitive to pharmacological BCL2 inhibition than negative ones. Finally, in a xenograft model using patient-derived leukaemic blasts, real-time, in vivo imaging confirmed pharmacological inhibition of BCL2 as a new therapeutic strategy in BCR-ABL-positive ALL. These data demonstrate the role of miR-17~92 in regulation of apoptosis, and identify BCL2 as a therapeutic target of particular relevance in BCR-ABL-positive ALL.
Background: CML presenting with a variant Philadelphia translocation, atypical BCR-ABL transcript, additional chromosomal aberrations, and evolving MDS is uncommon and therapeutically challenging. The prognostic significance of these genetic findings is uncertain, even as singular aberrations, with nearly no data on management and outcome when they coexist. MDS evolving during the course of CML may be either treatment-associated or an independently coexisting disease, and is generally considered to have an inferior prognosis. Tyrosine kinase inhibitors (TKI) directed against BCR-ABL are the mainstay of treatment for CML, whereas treatment modalities that may be utilized for MDS and CML include allogeneic stem cell transplant and – at least conceptually – hypomethylating agents.
Case report: Here, we describe the clinical course of such a patient, demonstrating that long-term combined treatment with dasatinib and azacitidine for coexisting CML and MDS is feasible and well tolerated, and may be capable of slowing disease progression. This combination therapy had no deleterious effect on subsequent potentially curative haploidentical bone marrow transplantation.
Conclusions: The different prognostic implications of this unusual case and new therapeutic options in CML are discussed, together with a review of the current literature on CML presenting with different types of genomic aberrations and the coincident development of MDS. Additionally, this case gives an example of long-term combined treatment of tyrosine kinase inhibitors and hypomethylating agents, which could be pioneering in CML treatment.
Purpose: Aberrant PI3K/AKT/mTOR signaling has been linked to oncogenesis and therapy resistance in various malignancies including leukemias. In Philadelphia chromosome (Ph) positive leukemias, activation of PI3K by dysregulated BCR-ABL tyrosine kinase (TK) contributes to the pathogenesis and development of resistance to ABL-TK inhibitors (TKI). The PI3K pathway thus is an attractive therapeutic target in BCR-ABL positive leukemias, but its role in BCR-ABL negative ALL is conjectural. Moreover, the functional contribution of individual components of the PI3K pathway in ALL has not been established.
Experimental design: We compared the activity of the ATP-competitive pan-PI3K inhibitor NVP-BKM120, the allosteric mTORC1 inhibitor RAD001, the ATP-competitive dual PI3K/mTORC1/C2 inhibitors NVP-BEZ235 and NVP-BGT226 and the combined mTORC1 and mTORC2 inhibitors Torin 1, PP242 and KU-0063794 using long-term cultures of ALL cells (ALL-LTC) from patients with B-precursor ALL that expressed the BCR-ABL or TEL-ABL oncoproteins or were BCR-ABL negative.
Results: Dual PI3K/mTOR inhibitors profoundly inhibited growth and survival of ALL cells irrespective of their genetic subtype and their responsiveness to ABL-TKI. Combined suppression of PI3K, mTORC1 and mTORC2 displayed greater antileukemic activity than selective inhibitors of PI3K, mTORC1 or mTORC1 and mTORC2.
Conclusions: Inhibition of the PI3K/mTOR pathway is a promising therapeutic approach in patients with ALL. Greater antileukemic activity of dual PI3K/mTORC1/C2 inhibitors appears to be due to the redundant function of PI3K and mTOR. Clinical trials examining dual PI3K/mTORC1/C2 inhibitors in patients with B-precursor ALL are warranted, and should not be restricted to particular genetic subtypes.
Background: Previously, we showed that glioma pathogenesis related protein (GliPR) is induced in CEM T cells upon HIV-1 infection in vitro. To examine whether GliPR plays a role as HIV dependency factor (HDF), we tested the effect of GliPR suppression by siRNA on HIV-1 replication. Results: Induction of GliPR expression by HIV-1 was confirmed in P4-CCR5 cells. When GliPR was suppressed by siRNA, HIV-1 replication was significantly reduced as measured by HIV-1 transcript levels, HIV-1 p24 protein levels, and HIV-1 LTR-driven reporter gene expression, suggesting that GliPR is a cellular co-factor of HIV-1. Microarray analysis of uninfected HeLa cells following knockdown of GliPR revealed, among a multitude of gene expression alterations, a down-regulation of syndecan-1, syndecan-2, protein kinase C alpha (PRKCA), the catalytic subunit beta of cAMP-dependent protein kinase (PRKACB), nuclear receptor co-activator 3 (NCOA3), and cell surface protein CD59 (protectin), all genes having relevance for HIV-1 pathology. Conclusions: The up-regulation of GliPR by HIV-1 and the early significant inhibition of HIV-1 replication mediated by knockdown of GliPR reveal GliPR as an important HIV-1 dependency factor (HDF), which may be exploited for HIV-1 inhibition.
Background Imatinib mesylate, a selective inhibitor of Abl tyrosine kinase, is efficacious in treating chronic myeloid leukaemia (CML) and Ph+ acute lymphoblastic leukaemia (ALL). However, most advanced-phase CML and Ph+ ALL patients relapse on Imatinib therapy. Several mechanisms of refractoriness have been reported, including the activation of the Src-family kinases (SFK). Here, we investigated the biological effect of the new specific dual Src/Abl kinase inhibitor AZD0530 on Ph+ leukaemic cells. Methods Cell lines used included BV173 (CML in myeloid blast crisis), SEM t(4;11), Ba/F3 (IL-3 dependent murine pro B), p185Bcr-Abl infected Ba/F3 cells, p185Bcr-Abl mutant infected Ba/F3 cells, SupB15 (Ph+ ALL) and Imatinib resistant SupB15 (RTSupB15) (Ph+ ALL) cells. Cells were exposed to AZD0530 and Imatinib. Cell proliferation, apoptosis, survival and signalling pathways were assessed by dye exclusion, flow cytometry and Western blotting respectively. Results AZD0530 specifically inhibited the growth of, and induced apoptosis in CML and Ph+ ALL cells in a dose dependent manner, but showed only marginal effects on Ph- ALL cells. Resistance to Imatinib due to the mutation Y253F in p185Bcr-Abl was overcome by AZD0530. Combination of AZD0530 and Imatinib showed an additive inhibitory effect on the proliferation of CML BV173 cells but not on Ph+ ALL SupB15 cells. An ongoing transphosphorylation was demonstrated between SFKs and Bcr-Abl. AZD0530 significantly down-regulated the activation of survival signalling pathways in Ph+ cells, resistant or sensitive to Imatinib, with the exception of the RTSupB15. Conclusion Our results indicate that AZD0530 targets both Src and Bcr-Abl kinase activity and reduces the leukaemic maintenance by Bcr-Abl.
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is an aggressive hematologic malignancy of bone-marrow (BM)-derived lymphoid precursor cells at various stages of differentiation. Although first-line therapy with chemotherapy and—in the case of BCR-ABL1 positive ALL—tyrosine kinase inhibitors is initially highly effective with remission rates of >90%, the overall survival rate in adult patients is 40–50% across all risk groups. Relapse originates from putative leukemia-initiating cells (LICs) that are intrinsically resistant to chemotherapeutic regimens, which may explain the poor long-term prognosis of patients with disease recurrence. Eradication of LICs thus is a principal aim of novel therapeutic approaches. A prerequisite for developing effective LIC-targeted treatments is the ability to identify and clinically monitor LICs in ALL, a goal that has to date been elusive. The existence, phenotype, biological properties and the hierarchical organization of LICs in BCP-ALL remain highly controversial. ...
An excess of the proinflammatory substance IL-18 is present in joints of patients with rheumatoid arthritis (RA), and expression of IL-18 receptor (IL-18R) regulates IL-18 bioactivity in various cell types. We examined the expression of IL-18R alpha-chain and beta-chain and the biologic effects of IL-18 in fibroblast-like synoviocytes (FLS) after long-term culture. The presence of both IL-18R chains was a prerequisite for IL-18 signal transduction in FLS. However, all FLS cultures studied were either resistant or barely responsive to IL-18 stimulation as regards cell proliferation, expression of adhesion molecules ICAM-1 and vascular cell adhesion molecule (VCAM)-1, and the release of interstitial collagenase and stromelysin, IL-6 and IL-8, prostaglandin E2, or nitric oxide. We conclude that the presence of macrophages or IL-18R+ T cells that can respond directly to IL-18 is essential for the proinflammatory effects of IL-18 in synovitis in RA. Open Access: Published: 14 November 2001 © 2002 Möller et al., licensee BioMed Central Ltd (Print ISSN 1465-9905; Online ISSN 1465-9913)
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.