Refine
Year of publication
Document Type
- Article (24)
- Working Paper (8)
- Part of Periodical (4)
Has Fulltext
- yes (36)
Is part of the Bibliography
- no (36)
Keywords
- Artificial Intelligence (3)
- Bitcoin (2)
- COVID-19 news (2)
- Comments disabled (2)
- Cryptocurrency (2)
- Financial Institutions (2)
- Machine learning (2)
- Adoption (1)
- Advertisement disclosure (1)
- Advertising performance (1)
Institute
Der Einsatz von Künstliche Intelligenz (KI) – Technologien eröffnet viele Chancen, birgt aber auch viele Risiken – insbesondere in der Finanzbranche. Dieses Whitepaper gibt einen Überblick über den aktuellen Stand der Anwendung und Regulierung von KI-Technologien in der Finanzbranche, und diskutiert Chancen und Risiken von KI. KI findet in der Finanzbranche zahlreiche Anwendungsgebiete. Dazu gehören Chatbots, intelligente Assistenten für Kunden, automatischer Hochfrequenzhandel, automatisierte Betrugserkennung, Überwachung der Compliance, Gesichtserkennungssoftware zur Kundenidentifikation u. v. m. Auch Finanzaufsichtsbehörden setzen zunehmend KI-Anwendungen ein, um große und komplexe Datenmengen (Big Data) automatisiert und skalierbar auf Muster zu untersuchen und ihren Aufsichtspflichten nachzukommen.
Die Regulierung von KI in der Finanzbranche ist ein Balanceakt. Auf der einen Seite gibt es eine Notwendigkeit Flexibilität zu gewährleisten, um Innovationen nicht einzudämmen und im internationalen Wettbewerb nicht abgehängt zu werden. Strenge Auflagen können in diesem Zusammenhang als Barriere für die erfolgreiche Weiter-)Entwicklung von KI-Applikationen in der Finanzbranche wirken. Auf der anderen Seite müssen Persönlichkeitsrechte geschützt und Entscheidungsprozesse nachvollziehbar bleiben. Die fehlende Erklärbarkeit und Interpretierbarkeit von KI-Modellen entsteht in erster Linie durch Intransparenz bei einem Großteil heutiger KI-Anwendungen, bei welchen zwar die Natur der Ein- und Ausgaben beobachtbar und verständlich ist, nicht jedoch die genauen Verarbeitungsschritte dazwischen (Blackbox Prinzip).
Dieses Spannungsfeld zeigt sich auch im aktuellen regulatorischen Ansatz verschiedener Behörden. So werden einerseits die positiven Seiten von KI betont, wie Effizienz- und Effektivitätsgewinne sowie Rentabilitäts- und Qualitätssteigerungen (Bundesregierung, 2019) oder neue Methoden der Gefahrenanalyse in der Finanzmarktregulierung (BaFin, 2018a). Andererseits, wird darauf verwiesen, dass durch KI getroffene Entscheidungen immer von Menschen verantwortet werden müssen (EU Art. 22 DSGVO) und demokratische Rahmenbedingungen des Rechtsstaats zu wahren seien (FinTechRat, 2017).
Für die Zukunft sehen wir die Notwendigkeit internationale Regularien prinzipienbasiert, vereinheitlicht und technologieneutral weiterzuentwickeln, ohne dabei die Entwicklung neuer KIbasierter Geschäftsmodelle zu bremsen. Im globalen Wettstreit sollte Europa bei der Regulierung des KI-Einsatzes eine Vorreiterrolle einnehmen und damit seine demokratischen Werte der digitalen Freiheit, Selbstbestimmung und das Recht auf Information weltweit exportieren. Förderprogramme sollten einen stärkeren Fokus auf die Entwicklung nachhaltiger und verantwortungsvoller KI in Banken legen. Dazu zählt insbesondere die (Weiter-)Entwicklung breit einsetzbarer Methoden, die es erlauben, menschen-interpretierbare Erklärungen für erzeugte Ausgaben bereitzustellen und Problemen wie dem Blackbox Prinzip entgegenzuwirken.
Aus Sicht der Unternehmen in der Finanzbranche könnte eine Kooperation mit BigTech-Unternehmen sinnvoll sein, um gemeinsam das Potential der Technologie bestmöglich ausschöpfen zu können. Nützlich wäre auch ein gemeinsames semantisches Metadatenmodell zur Beschreibung der in der Finanzbranche anfallenden Daten. In Zukunft könnten künstliche Intelligenzen Daten aus sozialen Netzwerken berücksichtigen oder Smart Contracts aushandeln. Eine der größten Herausforderungen der Zukunft wird das Anwerben geeigneten Personals darstellen.
How prices can be set to allocate grid computing resources in a financial service institution
(2011)
GRID COMPUTING IS AN IT CONCEPT TO SHARE COMPUTING RESOURCES AMONG DEPARTMENTS AND USERS THAT REDUCES IT COSTS AND PROVIDES COMPUTING RESOURCES DYNAMICALLY WHEN THEY ARE NEEDED. RESOURCE MARKETS ARE AN EFFECTIVE MECHANISM TO REGULATE THE RESOURCE SHARING, BUT THE MOST OFTEN USED AUCTIONS ARE COMPLEX. WE HAVE DEVELOPED A STEPWISE APPROACH TO HELP FIRMS OFFERING INTERNAL GRID COMPUTING SERVICES TO SET TRANSPARENT BUT EFFECTIVE PAY-PER-USE PRICING SCHEMES AS AN ALTERNATIVE TO AUCTIONS.
The possibility to investigate the impact of news on stock prices has observed a strong evolution thanks to the recent use of natural language processing (NLP) in finance and economics. In this paper, we investigate COVID-19 news, elaborated with the ”Natural Language Toolkit” that uses machine learning models to extract the news’ sentiment. We consider the period from January till June 2020 and analyze 203,886 online articles that deal with the pandemic and that were published on three platforms: MarketWatch.com, Reuters.com and NYtimes.com. Our findings show that there is a significant and positive relationship between sentiment score and market returns. This result indicates that an increase (decrease) in the sentiment score implies a rise in positive (negative) news and corresponds to positive (negative) market returns. We also find that the variance of the sentiments and the volume of the news sources for Reuters and MarketWatch, respectively, are negatively associated to market returns indicating that an increase of the uncertainty of the sentiment and an increase in the arrival of news have an adverse impact on the stock market.
Sample-based longitudinal discrete choice experiments: preferences for electric vehicles over time
(2021)
Discrete choice experiments have emerged as the state-of-the-art method for measuring preferences, but they are mostly used in cross-sectional studies. In seeking to make them applicable for longitudinal studies, our study addresses two common challenges: working with different respondents and handling altering attributes. We propose a sample-based longitudinal discrete choice experiment in combination with a covariate-extended hierarchical Bayes logit estimator that allows one to test the statistical significance of changes. We showcase this method’s use in studies about preferences for electric vehicles over six years and empirically observe that preferences develop in an unpredictable, non-monotonous way. We also find that inspecting only the absolute differences in preferences between samples may result in misleading inferences. Moreover, surveying a new sample produced similar results as asking the same sample of respondents over time. Finally, we experimentally test how adding or removing an attribute affects preferences for the other attributes.
IN TWO-SIDED MARKETS SUCH AS EXCHANGES, AN INTERMEDIARY BRINGS TOGETHER TWO DISTINCT CUSTOMER POPULATIONS, E.G., BUYERS AND SELLERS. THESE CUSTOMER POPULATIONS INTERACT VIA A PLATFORM PROVIDED BY THE INTERMEDIARY, AND TYPICALLY NETWORK EFFECTS ARE OBSERVABLE IN THESE MARKETS; IF THE NUMBER OF BUYERS IS HIGH, MORE SELLERS ARE ATTRACTED TO THE PLATFORM, AND VICE VERSA. IN SUCH MARKETS IT IS DIFFICULT TO MEASURE THE ECONOMIC SUCCESS OF IT INVESTMENTS. THIS ARTICLE PROPOSES A SOLUTION.
THE PROLIFERATION OF THE INTERNET HAS ENABLED PLATFORM INTERMEDIARIES TO CREATE TWO-SIDED MARKETS IN MANY INDUSTRIES. IN SUCH MARKETS, NETWORK EFFECTS OFTEN OCCUR WHICH CAN DIFFER FOR NEW AND EXISTING CUSTOMERS. THE AUTHORS DEVELOP AN INFLUX-OUTFLOW MODEL TO INVESTIGATE THE CONDITIONS UNDER WHICH THE ESTIMATION OF SAME-SIDE AND CROSS-SIDE NETWORK EFFECTS SHOULD DISTINGUISH BETWEEN ITS IMPACT ON THE NUMBER OF NEW CUSTOMERS (I.E., ACQUISITION) AND EXISTING CUSTOMERS (I.E., THEIR ACTIVITY).