Refine
Year of publication
Document Type
- Article (18)
- Doctoral Thesis (1)
Language
- English (19)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- Cyanobacteria (3)
- Membrane Biogenesis (2)
- Membrane Proteins (2)
- Mitochondria (2)
- Protein Translocation (2)
- TolC (2)
- Transport (2)
- Alternate hydrophobicity (1)
- Amino acid pattern (1)
- Antibiotic Resistance (1)
Höhere Eukaryoten stellen ein Ensemble von Zellen dar, die in Kompartimente unterteilt sind. Somit sind intra- und interzelluläre Transportprozesse entscheidend für das Überleben dieser Zellverbände. In meiner Arbeit habe ich Evolution und Struktur von Translokationskomplexen untersucht, um einige Aspekte dieser komplexen Systeme zu untersuchen. Eingangs befassten wir uns mit Rezeptorsystemen am Beispiel des Proteintransports. Mittels phylogenetischer Analysen fanden wir heraus, dass Pex5 nicht der Urahn der anderen untersuchten 3-TPR-Domänen ist, obwohl Pex5 in allen eukaryotischen Organismen vorkommt. Ein Vergleich der 3-TPR-Domänen mit der restlichen Sequenz des Rezeptorproteins ergab, dass die 3-TPR-Domänen eine langsamere Evolutionsgeschwindigkeit aufweisen, was für eine Evolutionseinschränkung durch Interaktionspartner spricht. Sec72 ist möglicherweise aus einer TPR1 (Hop) Domäne entstanden und eine Funktion als Hsp70-erkennende Komponente des Sec-Komplexes für den post-translationalen Import kann daraus abgeleitet werden. „Recycling“ von 3-TPR-Domänen anderer Proteine konnten wir durch unsere phylogenetische Analyse auch für die zweite 3-TPR-Domäne von Tom34 nachweisen, die mit CYP40/FKBP51/52 clustert. Darüber hinaus war es uns möglich, die plastidär bzw. mitochondriell lokalisierten Formen von Toc64 phylogenetisch zu unterscheiden. Durch Erzeugung von Homologiemodellen konnten organellspezifische Aminosäuren strukturell eingeordnet werden. Dabei stellten wir fest, dass sich fast alle Positionen, die sich in der Aminosäurekomposition unterscheiden, auf der konvexen Seite der 3-TPR-Domäne befinden. Molekulardynamische Simulationen zeigten zudem deutliche Veränderung der Hauptbewegungen der 3-TPR-Domänen nach Komplexierung mit dem Hsp90-C-Terminus. Bei Bindung des Liganden werden intramolekulare Wasserstoffbrücken sowohl auf der konvexen als auch konkaven Seite der 3-TPR-Domäne „umgeschaltet“. Diese Erkenntnisse führen zu zwei Hypothesen: 1.) die Organellspezifität der Rezeptoren wird durch die Interaktion mit anderen Komplexpartnern garantiert und 2.) die Änderungen des Wasserstoffbrückennetzwerkes auf der konvexen Seite nach Hsp90-Bindung führen zur Ausbildung der Bindungsstelle für die andere Komplexkomponente. Beide Hypothesen erklären die experimentellen Beobachtungen bezüglich der Rezeptoren und warum keine phylogenetischen Hinweise für die Existenz von Vorstufenprotein-spezifischen Hsp70/90-Proteinen gefunden werden konnten. Nach dem Rezeptor haben wir uns mit dem Translokationsprozess befasst. Wir konnten phylogenetisch zeigen, dass sich Omp85 aus Proteobakterien im Vergleich zu Cyanobakterien und Eukaryoten insbesondere durch andersartige POTRA Domänen auszeichnet und fanden zwei konservierte Motive in der Porenregion. Zudem konnten wir im Heterokontophyten P. tricornutum ein vollständiges Omp85 identifizieren (bipartite Signalsequenz, 2 POTRAs, Pore mit langen Schleifen). Die Aminosäuresequenz weicht teils deutlich von den bekannten Omp85-Proteinen ab, was die Entdeckung erschwerte. Wir haben damit geklärt, dass auch im Translokationsapparat von komplexen Plastiden ein b-Fassprotein der Omp85 Familie die Kerneinheit bildet. Ebenfalls zu den Protein-transportierenden b-Fassproteinen gehört TolC, das aber im Gegensatz zu Omp85 auch andere Substanzen, wie zum Beispiel Siderophore transportiert. Alr2887 ist das einzige TolC-ähnliche Protein aus Anabaena sp. PCC7120. Vergleichende Phänotypuntersuchungen weisen auf eine Interaktion eines ABC-Transporters (DevBCA Operon) mit Alr2887 hin. Die Distanz zwischen äußerer Membran und Plasmamembran ist in Anabaena doppelt so groß wie in E. coli. Entsprechend fanden wir im Adapterprotein DevB eine stark verlängerte dimere Doppelwendel, die das von TolC gebildete a-Fass im Periplasma bis hin zum ABC-Transporter in der Plasmamembran theoretisch fortsetzen kann. Da verschiedenste in Anabaena existierende ABC-Transporter TolC als Abflusskanal benötigen, nehmen wir an, dass Alr2887 ein Rundumtalent in Bezug auf die zu transportierenden Substrate darstellt. Dieses ist auch aufgrund der basalen Einordnung im phylogenetischen Baum zu vermuten; es könnte somit auch in den „Multi-Drug-Efflux“ involviert sein. Nicht nur ABC-Transporter, auch TonB-abhängige Transporter stehen in funktionellem Zusammenhang mit TolC. Wir haben Aminosäuresequenzen von ~4600 TBDTs aus Gram-negativen Bakterien und Cyanobakterien zusammengetragen und nach ihrer paarweisen Ähnlichkeit geclustert. Anhand experimentell charakterisierter TBDTs mit bekannten Substraten und TBDTs mit vorhergesagten Substraten konnten wir sehr vielen Clustern ein Substrat zuordnen, das die in ihnen zusammengefassten TBDTs aller Wahrscheinlichkeit nach importieren. Wir konnten ferner feststellen, dass es noch eine Menge weiterer Cluster mit unbekannten Substratspezifitäten gibt und unsere Analysen stimulieren somit die Arbeiten an diesem System im Allgemeinen und in Cyanobakterien im Besonderen.
Background Different iron transport systems evolved in Gram-negative bacteria during evolution. Most of the transport systems depend on outer membrane localized TonB-dependent transporters (TBDTs), a periplasma-facing TonB protein and a plasma membrane localized machinery (ExbBD). So far, iron chelators (siderophores), oligosaccharides and polypeptides have been identified as substrates of TBDTs. For iron transport, three uptake systems are defined: the lactoferrin/transferrin binding proteins, the porphyrin-dependent transporters and the siderophore-dependent transporters. However, for cyanobacteria almost nothing is known about possible TonB-dependent uptake systems for iron or other substrates. Results We have screened all publicly available eubacterial genomes for sequences representing (putative) TBDTs. Based on sequence similarity, we identified 195 clusters, where elements of one cluster may possibly recognize similar substrates. For Anabaena sp. PCC 7120 we identified 22 genes as putative TBDTs covering almost all known TBDT subclasses. This is a high number of TBDTs compared to other cyanobacteria. The expression of the 22 putative TBDTs individually depends on the presence of iron, copper or nitrogen. Conclusions We exemplified on TBDTs the power of CLANS-based classification, which demonstrates its importance for future application in systems biology. In addition, the tentative substrate assignment based on characterized proteins will stimulate the research of TBDTs in different species. For cyanobacteria, the atypical dependence of TBDT gene expression on different nutrition points to a yet unknown regulatory mechanism. In addition, we were able to clarify a hypothesis of the absence of TonB in cyanobacteria by the identification of according sequences.
Chloroplast function depends on the translocation of cytosolically synthesized precursor proteins into the organelle. The recognition and transfer of most precursor proteins across the outer membrane depend on a membrane inserted complex. Two receptor components of this complex, Toc34 and Toc159, are GTPases, which can be phosphorylated by kinases present in the hosting membrane. However, the physiological function of phosphorylation is not yet understood in detail. It is demonstrated that both receptors are phosphorylated within their G-domains. In vitro, the phosphorylation of Toc34 disrupts both homo- and heterodimerization of the G-domains as determined using a phospho-mimicking mutant. In endogenous membranes this mutation or phosphorylation of the wild-type receptor disturbs the association of Toc34, but not of Toc159 with the translocation pore. Therefore, phosphorylation serves as an inhibitor for the association of Toc34 with other components of the complex and phosphorylation can now be discussed as a mechanism to exchange different isoforms of Toc34 within this ensemble.
BACKGROUND: The identification of beta-barrel membrane proteins out of a genomic/proteomic background is one of the rapidly developing fields in bioinformatics. Our main goal is the prediction of such proteins in genome/proteome wide analyses.
RESULTS: For the prediction of beta-barrel membrane proteins within prokaryotic proteomes a set of parameters was developed. We have focused on a procedure with a low false positive rate beside a procedure with lowest false prediction rate to obtain a high certainty for the predicted sequences. We demonstrate that the discrimination between beta-barrel membrane proteins and other proteins is improved by analyzing a length limited region. The developed set of parameters is applied to the proteome of E. coli and the results are compared to four other described procedures.
CONCLUSION: Analyzing the beta-barrel membrane proteins revealed the presence of a defined membrane inserted beta-barrel region. This information can now be used to refine other prediction programs as well. So far, all tested programs fail to predict outer membrane proteins in the proteome of the prokaryote E. coli with high reliability. However, the reliability of the prediction is improved significantly by a combinatory approach of several programs. The consequences and usability of the developed scores are discussed.
High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided.
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the ‘core-set’ of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Background: Protein translocation across membranes is a central process in all cells. In the past decades the molecular composition of the translocation systems in the membranes of the endoplasmic reticulum, peroxisomes, mitochondria and chloroplasts have been established based on the analysis of model organisms. Today, these results have to be transferred to other plant species. We bioinformatically determined the inventory of putative translocation factors in tomato (Solanum lycopersicum) by orthologue search and domain architecture analyses. In addition, we investigated the diversity of such systems by comparing our findings to the model organisms Saccharomyces cerevisiae, Arabidopsis thaliana and 12 other plant species.
Results: The literature search end up in a total of 130 translocation components in yeast and A. thaliana, which are either experimentally confirmed or homologous to experimentally confirmed factors. From our bioinformatic analysis (PGAP and OrthoMCL), we identified (co-)orthologues in plants, which in combination yielded 148 and 143 orthologues in A. thaliana and S. lycopersicum, respectively. Interestingly, we traced 82% overlap in findings from both approaches though we did not find any orthologues for 27% of the factors by either procedure. In turn, 29% of the factors displayed the presence of more than one (co-)orthologue in tomato. Moreover, our analysis revealed that the genomic composition of the translocation machineries in the bryophyte Physcomitrella patens resemble more to higher plants than to single celled green algae. The monocots (Z. mays and O. sativa) follow more or less a similar conservation pattern for encoding the translocon components. In contrast, a diverse pattern was observed in different eudicots.
Conclusions: The orthologue search shows in most cases a clear conservation of components of the translocation pathways/machineries. Only the Get-dependent integration of tail-anchored proteins seems to be distinct. Further, the complexity of the translocation pathway in terms of existing orthologues seems to vary among plant species. This might be the consequence of palaeoploidisation during evolution in plants; lineage specific whole genome duplications in Arabidopsis thaliana and triplications in Solanum lycopersicum.
50 years of amino acid hydrophobicity scales : revisiting the capacity for peptide classification
(2016)
Background: Physicochemical properties are frequently analyzed to characterize protein-sequences of known and unknown function. Especially the hydrophobicity of amino acids is often used for structural prediction or for the detection of membrane associated or embedded β-sheets and α-helices. For this purpose many scales classifying amino acids according to their physicochemical properties have been defined over the past decades. In parallel, several hydrophobicity parameters have been defined for calculation of peptide properties. We analyzed the performance of separating sequence pools using 98 hydrophobicity scales and five different hydrophobicity parameters, namely the overall hydrophobicity, the hydrophobic moment for detection of the α-helical and β-sheet membrane segments, the alternating hydrophobicity and the exact ß-strand score.
Results: Most of the scales are capable of discriminating between transmembrane α-helices and transmembrane β-sheets, but assignment of peptides to pools of soluble peptides of different secondary structures is not achieved at the same quality. The separation capacity as measure of the discrimination between different structural elements is best by using the five different hydrophobicity parameters, but addition of the alternating hydrophobicity does not provide a large benefit. An in silico evolutionary approach shows that scales have limitation in separation capacity with a maximal threshold of 0.6 in general. We observed that scales derived from the evolutionary approach performed best in separating the different peptide pools when values for arginine and tyrosine were largely distinct from the value of glutamate. Finally, the separation of secondary structure pools via hydrophobicity can be supported by specific detectable patterns of four amino acids.
Conclusion: It could be assumed that the quality of separation capacity of a certain scale depends on the spacing of the hydrophobicity value of certain amino acids. Irrespective of the wealth of hydrophobicity scales a scale separating all different kinds of secondary structures or between soluble and transmembrane peptides does not exist reflecting that properties other than hydrophobicity affect secondary structure formation as well. Nevertheless, application of hydrophobicity scales allows distinguishing between peptides with transmembrane α-helices and β-sheets. Furthermore, the overall separation capacity score of 0.6 using different hydrophobicity parameters could be assisted by pattern search on the protein sequence level for specific peptides with a length of four amino acids.
Relative orientation of POTRA domains from cyanobacterial Omp85 studied by pulsed EPR spectroscopy
(2016)
Many proteins of the outer membrane of Gram-negative bacteria and of the outer envelope of the endosymbiotically derived organelles mitochondria and plastids have a β-barrel fold. Their insertion is assisted by membrane proteins of the Omp85-TpsB superfamily. These proteins are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. Based on structural studies of Omp85 proteins, including the five POTRA-domain-containing BamA protein of Escherichia coli, it is predicted that anaP2 and anaP3 bear a fixed orientation, whereas anaP1 and anaP2 are connected via a flexible hinge. We challenged this proposal by investigating the conformational space of the N-terminal POTRA domains of Omp85 from the cyanobacterium Anabaena sp. PCC 7120 using pulsed electron-electron double resonance (PELDOR, or DEER) spectroscopy. The pronounced dipolar oscillations observed for most of the double spin-labeled positions indicate a rather rigid orientation of the POTRA domains in frozen liquid solution. Based on the PELDOR distance data, structure refinement of the POTRA domains was performed taking two different approaches: 1) treating the individual POTRA domains as rigid bodies; and 2) using an all-atom refinement of the structure. Both refinement approaches yielded ensembles of model structures that are more restricted compared to the conformational ensemble obtained by molecular dynamics simulations, with only a slightly different orientation of N-terminal POTRA domains anaP1 and anaP2 compared with the x-ray structure. The results are discussed in the context of the native environment of the POTRA domains in the periplasm.
The endoplasmic reticulum–mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level. Here we report that conserved surface areas on opposite sides of the Mdm10 β-barrel interact with SAM and ERMES, respectively. We generated point mutants to separate protein assembly (SAM) from morphology and phospholipid homeostasis (ERMES). Our study reveals that the β-barrel channel of Mdm10 serves different functions. Mdm10 promotes the biogenesis of α-helical and β-barrel proteins at SAM and functions as integral membrane anchor of ERMES, demonstrating that SAM-mediated protein assembly is distinct from ER-mitochondria contact sites.