Refine
Year of publication
Language
- English (16)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- Polarization (2)
- Azimuthal correlations (1)
- Charmonia (1)
- Elastic scattering (1)
- Flow (1)
- Heavy ion collisions (1)
- Heavy-ion (1)
- Nonflow (1)
- QGP (1)
- RHIC (1)
Institute
We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN−−−−√=200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s that suggests that the produced medium has a small viscosity per unit entropy.
The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of 𝐽/𝜓→𝑒+𝑒− at midrapidity and high transverse momentum (𝑝𝑇>5 GeV/𝑐) in 𝑝+𝑝 and central Cu+Cu collisions at √𝑠𝑁𝑁=200 GeV. The inclusive 𝐽/𝜓 production cross section for Cu+Cu collisions is found to be consistent at high 𝑝𝑇 with the binary collision-scaled cross section for 𝑝+𝑝 collisions. At a confidence level of 97%, this is in contrast to a suppression of 𝐽/𝜓 production observed at lower 𝑝𝑇. Azimuthal correlations of 𝐽/𝜓 with charged hadrons in 𝑝+𝑝 collisions provide an estimate of the contribution of 𝐵-hadron decays to 𝐽/𝜓 production of 13%±5%.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). In 5-30% central collisions a sizable difference is present between the v1(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v1 for both pions and protons, none of them can describe v1(y) for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). The proton v1(y) slope is found to be much closer to zero compared to antiprotons. A sizable difference is seen between v1 of protons and antiprotons in 5-30% central collisions. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. Anti-flow alone cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √s=200 GeV in elastic proton–proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003⩽|t|⩽0.035 (GeV/c)2, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this √s, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton–proton elastic scattering.
We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models.
Rapidity-odd directed flow measurements at midrapidity are presented for Λ, Λ¯, K±, K0s and ϕ at sNN−−−−√= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.
A data-driven method was applied to Au+Au collisions at √sNN = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance η-dependent and η-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a η-independent component of the correlation, which is dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η within the measured range of pseudorapidity |η| < 1. In 20–30% central Au+Au collisions, the relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.) for particles with transverse momentum pT less than 2 GeV/c. The η-dependent part, attributed to nonflow correlations, is found to be 5% ± 2%(sys.) relative to the flow of the measured second harmonic cumulant at |η| > 0.7.
We present three-particle mixed-harmonic correlations 〈cos(mφa + nφb − (m + n)φc )〉 for harmonics m, n = 1 − 3 for charged particles in √sN N = 200 GeV Au+Au collisions at RHIC. These measurements provide information on the three-dimensional structure of the initial collision zone and are important for constraining models of a subsequent low-viscosity quark–gluon plasma expansion phase. We investigate correlations between the first, second and third harmonics predicted as a consequence of fluctuations in the initial state. The dependence of the correlations on the pseudorapidity separation between particles show hints of a breaking of longitudinal invariance. We compare our results to a number of state-of-the art hydrodynamic calculations with different initial states and temperature dependent viscosities. These measurements provide important steps towards constraining the temperature dependent viscosity and longitudinal structure of the initial state at RHIC.
The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN−−−−√ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN−−−−√ = 19.6 GeV for 0.4<Mee<0.75 GeV/c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN−−−−√ = 17.3 GeV. For sNN−−−−√ = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN−−−−√ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN−−−−√ = 200 GeV is longer than those in peripheral collisions and at lower energies.