Refine
Document Type
- Article (16)
- Conference Proceeding (1)
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- Anti-kaon–nucleon physics (1)
- Baryonic resonances (1)
- Freezeout (1)
- Heavy-ion reactions (1)
- Hyperons (1)
- Kaonic nuclei (1)
- Low energy QCD (1)
- Nucleus (1)
- Partial wave analysis (1)
- Proton (1)
Institute
- Physik (17)
Radiative transition of an excited baryon to a nucleon with emission of a virtual massive photon converting to dielectron pair (Dalitz decays) provides important information about baryon-photon coupling at low q2 in timelike region. A prominent enhancement in the respective electromagnetic transition Form Factors (etFF) at q2 near vector mesons ρ/ω poles has been predicted by various calculations reflecting strong baryon-vector meson couplings. The understanding of these couplings is also of primary importance for the interpretation of the emissivity of QCD matter studied in heavy ion collisions via dilepton emission. Dedicated measurements of baryon Dalitz decays in proton-proton and pion-proton scattering with HADES detector at GSI/FAIR are presented and discussed. The relevance of these studies for the interpretation of results obtained from heavy ion reactions is elucidated on the example of the HADES results.
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
n this paper we report on the investigation of baryonic resonance production in proton-proton collisions at the kinetic energies of 1.25 GeV and 3.5 GeV, based on data measured with HADES. Exclusive channels npπ+ and ppπ0 as well as ppe+e− were studied simultaneously in the framework of a one-boson exchange model. The resonance cross sections were determined from the one-pion channels for Δ(1232) and N(1440) (1.25 GeV) as well as further Δ and N* resonances up to 2 GeV/c2 for the 3.5 GeV data. The data at 1.25 GeV energy were also analysed within the framework of the partial wave analysis together with the set of several other measurements at lower energies. The obtained solutions provided the evolution of resonance production with the beam energy, showing a sizeable non-resonant contribution but with still dominating contribution of Δ(1232)P33. In the case of 3.5 GeV data, the study of the ppe+e− channel gave the insight on the Dalitz decays of the baryon resonances and, in particular, on the electromagnetic transition form-factors in the time-like region. We show that the assumption of a constant electromagnetic transition form-factors leads to underestimation of the yield in the dielectron invariant mass spectrum below the vector mesons pole. On the other hand, a comparison with various transport models shows the important role of intermediate ρ production, though with a large model dependency. The exclusive channels analysis done by the HADES collaboration provides new stringent restrictions on the parameterizations used in the models.
We present first data on sub-threshold production of Ks0 mesons and Λ hyperons in Au+Au collisions at sNN=2.4 GeV. We observe an universal 〈Apart〉 scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their 〈Apart〉 scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of them can simultaneously describe these observables with reasonable χ2 values.
his contribution aims to give a basic overview of the latest results regarding the production of resonances in different collision systems. The results were extracted from experimental data collected with HADES that is a multipurpose detector located at the GSI Helmholtzzentrum, Darmstadt. The main points discussed here are: the properties of the strange resonances Λ(1405) and Σ(1385), the role of Δ’s as a source of pions in the final state, the production dynamics reflected in form of differential cross sections, and the role of the ϕ meson as a source for K− particles.
The production of Σ0 baryons in the nuclear reaction p (3.5 GeV) + Nb (corresponding to sNN=3.18 GeV) is studied with the detector set-up HADES at GSI, Darmstadt. Σ0s were identified via the decay Σ0→Λγ with subsequent decays Λ→pπ− in coincidence with a e+e− pair from either external (γ→e+e−) or internal (Dalitz decay γ⁎→e+e−) gamma conversions. The differential Σ0 cross section integrated over the detector acceptance, i.e. the rapidity interval 0.5<y<1.1, has been extracted as ΔσΣ0=2.3±(0.2)stat±(−0.6+0.6)sys±(0.2)norm mb, yielding the inclusive production cross section in full phase space σΣ0total=5.8±(0.5)stat±(−1.4+1.4)sys±(0.6)norm±(1.7)extrapol mb by averaging over different extrapolation methods. The Λall/Σ0 ratio within the HADES acceptance is equal to 2.3±(0.2)stat±(−0.6+0.6)sys. The obtained rapidity and momentum distributions are compared to transport model calculations. The Σ0 yield agrees with the statistical model of particle production in nuclear reactions. Keywords: Hyperons, Strangeness, Proton, Nucleus.
We present data on charged kaons (K±) and ϕ mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K− and ϕ mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The ϕ/K− multiplicity ratio is found to be surprisingly high with a value of 0.52±0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K− transverse-mass spectra can be explained solely by feed-down, which substantially softens the spectra of K− mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze-out temperatures of K+ and K− mesons caused by different couplings to baryons.
Partial wave analysis of the reaction p(3.5 GeV) + p → pK +Λ to search for the "ppK−" bound state
(2015)
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5 GeV) + p → pK +Λ. This reaction might contain information about the kaonic cluster “ppK −” (with quantum numbers J P = 0− and total isospin I = 1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical KNN (or, specifically “ppK −”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a KNN cluster. At a confidence level of CLs = 95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK +Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.
We investigate identical pion HBT intensity interferometry in central Au+Au collisions at 1.23A GeV. High-statistics π−π− and π+π+ data are measured with HADES at SIS18/GSI. The radius parameters, derived from the correlation function depending on relative momenta in the longitudinally comoving system and parametrized as three-dimensional Gaussian distribution, are studied as function of transverse momentum. A substantial charge-sign difference of the source radii is found, particularly pronounced at low transverse momentum. The extracted source parameters agree well with a smooth extrapolation of the center-of-mass energy dependence established at higher energies, extending the corresponding excitation functions down towards a very low energy.
Many QCD based and phenomenological models predict changes of hadron properties in a strongly interacting environment. The results of these models differ significantly and the experimental determination of hadron properties in nuclear matter is essential. In this paper we present a review of selected physics results obtained at GSI Helmholtzzentrum für Schwerionenforschung GmbH by HADES (High-Acceptance Di-Electron Spectrometer). The e+e− pair emission measured for proton and heavy-ion induced collisions is reported together with results on strangeness production. The future HADES activities at the planned FAIR facility are also discussed.