### Refine

#### Document Type

- Article (5)
- Conference Proceeding (1)
- Doctoral Thesis (1)

#### Language

- English (7)

#### Has Fulltext

- yes (7)

#### Is part of the Bibliography

- no (7)

#### Keywords

- transfer entropy (2)
- aging (1)
- beta-band activity (1)
- dynamic causal modeling (1)
- information processing (1)
- information theory (1)
- information transfer (1)
- magnetoencephalography (1)
- multisensory integration (1)
- neural computation (1)

#### Institute

- Medizin (5)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
- MPI für Hirnforschung (2)
- Biodiversität und Klima Forschungszentrum (BiK-F) (1)
- Biowissenschaften (1)
- Informatik (1)
- Informatik und Mathematik (1)
- Institut für Ökologie, Evolution und Diversität (1)
- Senckenbergische Naturforschende Gesellschaft (1)

Measuring information processing in neural data: The application of transfer entropy in neuroscience
(2017)

It is a common notion in neuroscience research that the brain and neural systems in general "perform computations" to generate their complex, everyday behavior (Schnitzer, 2002). Understanding these computations is thus an important step in understanding neural systems as a whole (Carandini, 2012;Clark, 2013; Schnitzer, 2002; de-Wit, 2016). It has been proposed that one way to analyze these computations is by quantifying basic information processing operations necessary for computation, namely the transfer, storage, and modification of information (Langton, 1990; Mitchell, 2011; Mitchell, 1993;Wibral, 2015). A framework for the analysis of these operations has been emerging (Lizier2010thesis), using measures from information theory (Shannon, 1948) to analyze computation in arbitrary information processing systems (e.g., Lizier, 2012b). Of these measures transfer entropy (TE) (Schreiber2000), a measure of information transfer, is the most widely used in neuroscience today (e.g., Vicente, 2011; Wibral, 2011; Gourevitch, 2007; Vakorin, 2010; Besserve, 2010; Lizier, 2011; Richter, 2016; Huang, 2015; Rivolta, 2015; Roux, 2013). Yet, despite this popularity, open theoretical and practical problems in the application of TE remain (e.g., Vicente, 2011; Wibral, 2014a). The present work addresses some of the most prominent of these methodological problems in three studies.
The first study presents an efficient implementation for the estimation of TE from non-stationary data. The statistical properties of non-stationary data are not invariant over time such that TE can not be easily estimated from these observations. Instead, necessary observations can be collected over an ensemble of data, i.e., observations of physical or temporal replications of the same process (Gomez-Herrero, 2010). The latter approach is computationally more demanding than the estimation from observations over time. The present study demonstrates how to handles this increased computational demand by presenting a highly-parallel implementation of the estimator using graphics processing units.
The second study addresses the problem of estimating bivariate TE from multivariate data. Neuroscience research often investigates interactions between more than two (sub-)systems. It is common to analyze these interactions by iteratively estimating TE between pairs of variables, because a fully multivariate approach to TE-estimation is computationally intractable (Lizier, 2012a; Das, 2008; Welch, 1982). Yet, the estimation of bivariate TE from multivariate data may yield spurious, false-positive results (Lizier, 2012a;Kaminski, 2001; Blinowska, 2004). The present study proposes that such spurious links can be identified by characteristic coupling-motifs and the timings of their information transfer delays in networks of bivariate TE-estimates. The study presents a graph-algorithm that detects these coupling motifs and marks potentially spurious links. The algorithm thus partially corrects for spurious results due to multivariate effects and yields a more conservative approximation of the true network of multivariate information transfer.
The third study investigates the TE between pre-frontal and primary visual cortical areas of two ferrets under different levels of anesthesia. Additionally, the study investigates local information processing in source and target of the TE by estimating information storage (Lizier, 2012) and signal entropy. Results of this study indicate an alternative explanation for the commonly observed reduction in TE under anesthesia (Imas, 2005; Ku, 2011; Lee, 2013; Jordan, 2013; Untergehrer, 2014), which is often explained by changes in the underlying coupling between areas. Instead, the present study proposes that reduced TE may be due to a reduction in information generation measured by signal entropy in the source of TE. The study thus demonstrates how interpreting changes in TE as evidence for changes in causal coupling may lead to erroneous conclusions. The study further discusses current bast-practice in the estimation of TE, namely the use of state-of-the-art estimators over approximative methods and the use of optimization procedures for estimation parameters over the use of ad-hoc choices. It is demonstrated how not following this best-practice may lead to over- or under-estimation of TE or failure to detect TE altogether.
In summary, the present work proposes an implementation for the efficient estimation of TE from non-stationary data, it presents a correction for spurious effects in bivariate TE-estimation from multivariate data, and it presents current best-practice in the estimation and interpretation of TE. Taken together, the work presents solutions to some of the most pressing problems of the estimation of TE in neuroscience, improving the robust estimation of TE as a measure of information transfer in neural systems.

Network graphs have become a popular tool to represent complex systems composed of many interacting subunits; especially in neuroscience, network graphs are increasingly used to represent and analyze functional interactions between multiple neural sources. Interactions are often reconstructed using pairwise bivariate analyses, overlooking the multivariate nature of interactions: it is neglected that investigating the effect of one source on a target necessitates to take all other sources as potential nuisance variables into account; also combinations of sources may act jointly on a given target. Bivariate analyses produce networks that may contain spurious interactions, which reduce the interpretability of the network and its graph metrics. A truly multivariate reconstruction, however, is computationally intractable because of the combinatorial explosion in the number of potential interactions. Thus, we have to resort to approximative methods to handle the intractability of multivariate interaction reconstruction, and thereby enable the use of networks in neuroscience. Here, we suggest such an approximative approach in the form of an algorithm that extends fast bivariate interaction reconstruction by identifying potentially spurious interactions post-hoc: the algorithm uses interaction delays reconstructed for directed bivariate interactions to tag potentially spurious edges on the basis of their timing signatures in the context of the surrounding network. Such tagged interactions may then be pruned, which produces a statistically conservative network approximation that is guaranteed to contain non-spurious interactions only. We describe the algorithm and present a reference implementation in MATLAB to test the algorithm’s performance on simulated networks as well as networks derived from magnetoencephalographic data. We discuss the algorithm in relation to other approximative multivariate methods and highlight suitable application scenarios. Our approach is a tractable and data-efficient way of reconstructing approximative networks of multivariate interactions. It is preferable if available data are limited or if fully multivariate approaches are computationally infeasible.

The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decoupling. Yet, information transfer is a function of the amount of information available in the information source—such that transfer decreases even for unchanged coupling when less source information is available. Therefore, we reconsidered past interpretations of reduced information transfer as a sign of decoupling, and asked whether impaired local information processing leads to a loss of information transfer. An important prediction of this alternative hypothesis is that changes in locally available information (signal entropy) should be at least as pronounced as changes in information transfer. We tested this prediction by recording local field potentials in two ferrets after administration of isoflurane in concentrations of 0.0%, 0.5%, and 1.0%. We found strong decreases in the source entropy under isoflurane in area V1 and the prefrontal cortex (PFC)—as predicted by our alternative hypothesis. The decrease in source entropy was stronger in PFC compared to V1. Information transfer between V1 and PFC was reduced bidirectionally, but with a stronger decrease from PFC to V1. This links the stronger decrease in information transfer to the stronger decrease in source entropy—suggesting reduced source entropy reduces information transfer. This conclusion fits the observation that the synaptic targets of isoflurane are located in local cortical circuits rather than on the synapses formed by interareal axonal projections. Thus, changes in information transfer under isoflurane seem to be a consequence of changes in local processing more than of decoupling between brain areas. We suggest that source entropy changes must be considered whenever interpreting changes in information transfer as decoupling.

Information processing performed by any system can be conceptually decomposed into the transfer, storage and modification of information—an idea dating all the way back to the work of Alan Turing. However, formal information theoretic definitions until very recently were only available for information transfer and storage, not for modification. This has changed with the extension of Shannon information theory via the decomposition of the mutual information between inputs to and the output of a process into unique, shared and synergistic contributions from the inputs, called a partial information decomposition (PID). The synergistic contribution in particular has been identified as the basis for a definition of information modification. We here review the requirements for a functional definition of information modification in neuroscience, and apply a recently proposed measure of information modification to investigate the developmental trajectory of information modification in a culture of neurons vitro, using partial information decomposition. We found that modification rose with maturation, but ultimately collapsed when redundant information among neurons took over. This indicates that this particular developing neural system initially developed intricate processing capabilities, but ultimately displayed information processing that was highly similar across neurons, possibly due to a lack of external inputs. We close by pointing out the enormous promise PID and the analysis of information modification hold for the understanding of neural systems

Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and artificial systems.

Network or graph theory has become a popular tool to represent and analyze large-scale interaction patterns in the brain. To derive a functional network representation from experimentally recorded neural time series one has to identify the structure of the interactions between these time series. In neuroscience, this is often done by pairwise bivariate analysis because a fully multivariate treatment is typically not possible due to limited data and excessive computational cost. Furthermore, a true multivariate analysis would consist of the analysis of the combined effects, including information theoretic synergies and redundancies, of all possible subsets of network components. Since the number of these subsets is the power set of the network components, this leads to a combinatorial explosion (i.e. a problem that is computationally intractable). In contrast, a pairwise bivariate analysis of interactions is typically feasible but introduces the possibility of false detection of spurious interactions between network components, especially due to cascade and common drive effects. These spurious connections in a network representation may introduce a bias to subsequently computed graph theoretical measures (e.g. clustering coefficient or centrality) as these measures depend on the reliability of the graph representation from which they are computed. Strictly speaking, graph theoretical measures are meaningful only if the underlying graph structure can be guaranteed to consist of one type of connections only, i.e. connections in the graph are guaranteed to be non-spurious. ...

Aging is accompanied by unisensory decline. To compensate for this, two complementary strategies are potentially relied upon increasingly: first, older adults integrate more information from different sensory organs. Second, according to the predictive coding (PC) model, we form “templates” (internal models or “priors”) of the environment through our experiences. It is through increased life experience that older adults may rely more on these templates compared to younger adults. Multisensory integration and predictive coding would be effective strategies for the perception of near-threshold stimuli, which may however come at the cost of integrating irrelevant information. Both strategies can be studied in multisensory illusions because these require the integration of different sensory information, as well as an internal model of the world that can take precedence over sensory input. Here, we elicited a classic multisensory illusion, the sound-induced flash illusion, in younger (mean: 27 years, N = 25) and older (mean: 67 years, N = 28) adult participants while recording the magnetoencephalogram. Older adults perceived more illusions than younger adults. Older adults had increased pre-stimulus beta-band activity compared to younger adults as predicted by microcircuit theories of predictive coding, which suggest priors and predictions are linked to beta-band activity. Transfer entropy analysis and dynamic causal modeling of pre-stimulus magnetoencephalography data revealed a stronger illusion-related modulation of cross-modal connectivity from auditory to visual cortices in older compared to younger adults. We interpret this as the neural correlate of increased reliance on a cross-modal predictive template in older adults leading to the illusory percept.