Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Charmonia (1)
- Flow (1)
- Heavy-ion (1)
- Nonflow (1)
- Polarization (1)
- RHIC (1)
- STAR (1)
- Spin alignment (1)
Institute
- Physik (9)
At sufficiently high temperatures and baryon densities, nuclear matter is expected to undergo a transition into the Quark-Gluon-Plasma (QGP) consisting of deconfined quarks and gluons and accompanied by chiral symmetry restoration. Signals of these two fundamental characteristics of Quantum-Chromo-Dynamics (QCD) can be studied in ultra-relativistic heavy-ion collisions producing a relatively large volume of high energy and nucleon densities as existent in the early universe. Dileptons are unique bulk-penetrating sources for this purpose since they penetrate through the surrounding medium with negligible interaction and are created throughout the entire evolution of the initially created fireball. A multitude of experiments at SIS18, SPS and RHIC have taken on the challenging task to measure these rare probes in a heavy-ion environment. NA60's results from high-quality dimuon measurements have identified the broadened ρ spectral function as favorable scenario to explain the low-mass dilepton excess, and partonic sources as dominant at intermediate dilepton masses.
Enabled by the addition of a TOF detector system in 2010, the first phase of the Beam Energy Scan (BES-I) at RHIC allows STAR to conduct an unprecedented energy-dependent study of dielectron production within a homogeneous experimental environment, and hence close the wide gap in the QCD phase diagram between SPS and top RHIC energies. This thesis concentrates on the understanding of the LMR enhancement regarding its invariant mass, transverse momentum and energy dependence. It studies dielectron production in Au+Au collisions at beam energies of 19.6, 27, 39, and 62.4 GeV with sufficient statistics. In conjunction with the published STAR results at top RHIC energy, this thesis presents results on the first comprehensive energy-dependent study of dielectron production.
This includes invariant mass- and transverse momenta-spectra for the four beam energies measured in 0-80% minimum-bias Au+Au collisions with high statistics up to 3.5 GeV/c² and 2.2 GeV/c, respectively. Their comparison with cocktail simulations of hadronic sources reveals a sizeable and steadily increasing excess yield in the LMR at all beam energies. The scenario of broadened in-medium ρ spectral functions proves to not only serve well as dominating underlying source but also to be universal in nature since it quantitatively and qualitatively explains the LMR enhancements measured over the wide range from SPS to top RHIC energies. It shows that most of the enhancement is governed by interactions of the ρ meson with thermal resonance excitations in the late(r)-stage hot and dense hadronic phase. This conclusion is supported by the energy-dependent measurement of integrated LMR excess yields and enhancement factors. The former do not exhibit a strong dependence on beam energy as expected from the approximately constant total baryon density above 20 GeV, and the latter show agreement with the CERES measurement at SPS energy. The consistency in excess yields and agreement with model calculations over the wide RHIC energy regime makes a strong case for LMR enhancements on the order of a factor 2-3.
The extent of the results presented here enables a more solid discussion of its relation to chiral symmetry restoration from a theoretical point of view. High-statistics measurements at BES-II hold the promise to confirm these conclusions along with the LMR enhancment's relation to total baryon density with decreasing beam energy.
Dihadron angular correlations in d + Au collisions at √sNN = 200 GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity (η) on the near side (i.e. relative azimuth φ ∼ 0). This correlated yield as a function of η appears to scale with the dominant, primarily jet-related, away-side (φ ∼ π) yield. The Fourier coefficients of the φ correlation, Vn = (cosnφ), have a strong η dependence. In addition, it is found that V1 is approximately inversely proportional to the mid-rapidity event multiplicity, while V2 is independent of it with similar magnitude in the forward (d-going) and backward (Au-going) directions.
We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models.
Effect of event selection on jetlike correlation measurement in d+Au collisions at √sNN = 200 GeV
(2015)
Dihadron correlations are analyzed in √sNN = 200 GeV d + Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
The knowledge of baryonic resonance properties and production cross sections plays an important role for the extraction and understanding of medium modifications of mesons in hot and/or dense nuclear matter. We present and discuss systematics on dielectron and strangeness production obtained with HADES on p+p, p+A and A+A collisions in the few GeV energy regime with respect to these resonances.
Many QCD based and phenomenological models predict changes of hadron properties in a strongly interacting environment. The results of these models differ significantly and the experimental determination of hadron properties in nuclear matter is essential. In this paper we present a review of selected physics results obtained at GSI Helmholtzzentrum für Schwerionenforschung GmbH by HADES (High-Acceptance Di-Electron Spectrometer). The e+e− pair emission measured for proton and heavy-ion induced collisions is reported together with results on strangeness production. The future HADES activities at the planned FAIR facility are also discussed.
The High Acceptance DiElectron Spectrometer HADES [1] is installed at the Helmholtzzentrum für Schwerionenforschung (GSI) accelerator facility in Darmstadt. It investigates dielectron emission and strangeness production in the 1-3 AGeV regime. A recent experiment series focusses on medium-modifications of light vector mesons in cold nuclear matter. In two runs, p+p and p+Nb reactions were investigated at 3.5 GeV beam energy; about 9·109 events have been registered. In contrast to other experiments the high acceptance of the HADES allows for a detailed analysis of electron pairs with low momenta relative to nuclear matter, where modifications of the spectral functions of vector mesons are predicted to be most prominent. Comparing these low momentum electron pairs to the reference measurement in the elementary p+p reaction, we find in fact a strong modification of the spectral distribution in the whole vector meson region.
New results on the differential cross section in deuteron-proton elastic scattering are obtained at the deuteron kinetic energy of 2.5 GeV with the HADES spectrometer. The angular range of 69° – 125° in the center of mass system is covered. The obtained results are compared with the relativistic multiple scattering model calculation using the CD-Bonn deuteron wave function. The data at fixed scattering angles in the c.m. are in qualitative agreement with the constituent counting rules prediction.
A data-driven method was applied to Au+Au collisions at √sNN = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance η-dependent and η-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a η-independent component of the correlation, which is dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η within the measured range of pseudorapidity |η| < 1. In 20–30% central Au+Au collisions, the relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.) for particles with transverse momentum pT less than 2 GeV/c. The η-dependent part, attributed to nonflow correlations, is found to be 5% ± 2%(sys.) relative to the flow of the measured second harmonic cumulant at |η| > 0.7.