Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
Institute
Background: The importance of the Notch signaling in the development of glomerular diseases has been recently described. Therefore we analyzed in podocytes the expression and activity of ADAM10, one important component of the Notch signaling complex. Methods: By Western blot, immunofluorescence and immunohistochemistry analysis we characterized the expression of ADAM10 in human podocytes, human urine and human renal tissue. Results: We present evidence, that differentiated human podocytes possessed increased amounts of mature ADAM10 and released elevated levels of L1 adhesion molecule, one well known substrate of ADAM10. By using specific siRNA and metalloproteinase inhibitors we demonstrate that ADAM10 is involved in the cleavage of L1 in human podocytes. Injury of podocytes enhanced the ADAM10 mediated cleavage of L1. In addition, we detected ADAM10 in urinary podocytes from patients with kidney diseases and in tissue sections of normal human kidney. Finally, we found elevated levels of ADAM10 in urinary vesicles of patients with glomerular kidney diseases. Conclusions: The activity of ADAM10 in human podocytes may play an important role in the development of glomerular kidney diseases.
L1-CAM (L1 cell-adhesion molecule), or more simply L1, plays an important role in the progression of human carcinoma. Overexpression promotes tumour-cell invasion and motility, growth in nude mice and tumour metastasis. It is feasible that L1-dependent signalling contributes to these effects. However, little is known about its mechanism in tumour cells. We reported previously that L1 is cleaved by ADAM (a disintegrin and metalloprotease) and that the cytoplasmic part is essential for L1 function. Here we analysed more closely the role of proteolytic cleavage in L1-mediated nuclear signalling. Using OVMz carcinoma cells and L1-transfected cells as a model, we found that ADAM10-mediated cleavage of L1 proceeds in lipid raft and non-raft domains. The cleavage product, L1-32, is further processed by PS (presenilin)/gamma-secretase to release L1-ICD, an L1 intracellular domain of 28 kDa. Overexpression of dominantnegative PS1 or use of a specific gamma-secretase inhibitor leads to an accumulation of L1-32. Fluorescence and biochemical analysis revealed a nuclear localization for L1-ICD. Moreover, inhibition of ADAM10 and/or gamma-secretase blocks nuclear translocation of L1-ICD and L1-dependent gene regulation. Overexpression of recombinant L1-ICD mediates gene regulation in a similar manner to full-length L1. Our results establish for the first time that regulated proteolytic processing by ADAM10 and PS/gamma-secretase is essential for the nuclear signalling of L1 in human carcinoma cell lines. Key words: a disintegrin and metalloprotease 10 (ADAM10), L1 cell-adhesion molecule (L1-CAM), nuclear translocation, presenilin (PS)/gamma-secretase activity, raft, signalling.
PAX2 regulates ADAM10 expression and mediates anchorage-independent cell growth of melanoma cells
(2011)
PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression.
Diabetic nephropathy (DN) is a major cause of end-stage renal failure worldwide. Oxidative stress has been reported to be a major culprit of the disease and increased oxidized low density lipoprotein (oxLDL) immune complexes were found in patients with DN. In this study we present evidence, that CXCL16 is the main receptor in human podocytes mediating the uptake of oxLDL. In contrast, in primary tubular cells CD36 was mainly involved in the uptake of oxLDL. We further demonstrate that oxLDL down-regulated α3-integrin expression and increased the production of fibronectin in human podocytes. In addition, oxLDL uptake induced the production of reactive oxygen species (ROS) in human podocytes. Inhibition of oxLDL uptake by CXCL16 blocking antibodies abrogated the fibronectin and ROS production and restored α3 integrin expression in human podocytes. Furthermore we present evidence that hyperglycaemic conditions increased CXCL16 and reduced ADAM10 expression in podocytes. Importantly, in streptozotocin-induced diabetic mice an early induction of CXCL16 was accompanied by higher levels of oxLDL. Finally immunofluorescence analysis in biopsies of patients with DN revealed increased glomerular CXCL16 expression, which was paralleled by high levels of oxLDL. In summary, regulation of CXCL16, ADAM10 and oxLDL expression may be an early event in the onset of DN and therefore all three proteins may represent potential new targets for diagnosis and therapeutic intervention in DN.
Excessive accumulation of the extracellular matrix is a hallmark of many inflammatory and fibrotic diseases, including those of the kidney. This study addresses the question whether NO, in addition to inhibiting the expression of MMP-9, a prominent metalloprotease expressed by mesangial cells, additionally modulates expression of its endogenous inhibitor TIMP-1. We demonstrate that exogenous NO has no modulatory effect on the extracellular TIMP-1 content but strongly amplifies the early increase in cytokine-induced TIMP-1 mRNA and protein levels. We examined whether transforming growth factor beta (TGFbeta), a potent profibrotic cytokine, is involved in the regulation of NO-dependent TIMP-1 expression. Experiments utilizing a pan-specific neutralizing TGFbeta antibody demonstrate that the NO-induced amplification of TIMP-1 is mediated by extracellular TGFbeta. Mechanistically, NO causes a rapid increase in Smad-2 phosphorylation, which is abrogated by the addition of neutralizing TGFbeta antisera. Similarly, the NO-dependent increase in Smad-2 phosphorylation is prevented in the presence of an inhibitor of TGFbeta-RI kinase, indicating that the NO-dependent activation of Smad-2 occurs via the TGFbeta-type I receptor. Furthermore, activation of the Smad signaling cascade by NO is corroborated by the NO-dependent increase in nuclear Smad-4 level and is paralleled by increased DNA binding of Smad-2/3 containing complexes to a TIMP-1-specific Smad-binding element (SBE). Reporter gene assays revealed that NO activates a 0.6-kb TIMP-1 gene promoter fragment as well as a TGFbeta-inducible and SBE-driven control promoter. Chromatin immunoprecipitation analysis also demonstrated DNA binding activity of Smad-3 and Smad-4 proteins to the TIMP-1-specific SBE. Finally, by enzyme-linked immunosorbent assay, we demonstrated that NO causes a rapid increase in TGFbeta(1) levels in cell supernatants. Together, these experiments demonstrate that NO by induction of the Smad signaling pathway modulates TIMP-1 expression.